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Abstract

The aim of the present paper is to define and study contact pseudo-slant submanifolds of lorentzian para Kenmotsu
manifold. We investigate the geometry of leaves which arise the definition of contact pseudo-slant submanifolds of
Lorentzian para Kenmotsu manifold and obtaine integrability conditions of distributions. We also consider parallel
conditions of projections on study contact pseudo-slant submanifolds of Lorentzian para Kenmotsu manifold.
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1. Introduction

Lorentzian Kenmotsu manifolds have been defined by
Rosca [16]. Sar1 and Turgut Vanli [17, 18] worked on
Lorentzian Kenmotsu manifolds. In [20], Tirpathi and
De presented a survey on Lorentzian para-contact
manifolds. Also, some authors investigated
Lorentzian para Kenmotsu manifolds in [4, 10, 11].

Slant submanifolds are known to generalize invariant
and anti-invariant submanifolds, many geometers
have expressed an interest in this research. Chen [5, 6]
started this research on complex manifolds. Lotta[15]
pioneered slant immersions in a almost contact metric
manifold. Carriezo defined a new class of
submanifolds known as hemi-slant submanifolds
(Also  known as anti-slant or pseudo-slant
submanifolds) [3]. The contact version of a pseudo-
slant submanifold in a Sasakian manifold was then
defined and studied by V. A. Khan and M. A. Khan.
[12]. Later many geometers such as ([7, 13, 14,19])
studied pseudo-slant submanifolds on various
manifolds. Recently, M. Atgeken and S. Dirik studied
contact pseudo-slant submanifold on various
manifolds ([1,8,9]).

In the light of the above studies, our article, the
following is how this paper is structured: Section 2
includes some fundamental formulas and definitions
of the Lorentzian para-Kenmotsu manifold and it is
submanifolds. Section 3 we review some definitions
and proves some basic results on the contact pseudo-
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slant submanifolds of the Lorentzian para-Kenmotsu
manifold. Also, the final section looks at the totally
umbilical contact pseudo-slant in Lorentzian para
Kenmotsu manifolds.

2. Lorentzian Para -Kenmotsu Manifolds

Let M be an differentiable manifold with Lorentzian
metric g. If we have para-contact structure (¢, ¢,1n)
on M as the following:

XX =X+nX)E 0@ =-1 (1)
g(X,9Y) = g(X,Y) + n(X)n(¥)) )
»(&) =0, nop =0, n(X) =gX,%). (3)

forall X,Yel(TM ), where ¢ is (1,1)-tensor field, £ is
a vector field, n is a 1-form, then M is a called a
Lorentzian almost para-contact metric manifold[20].

From definition, it is clear that g(@X,Y) = g(X, ¢Y).
Similar to any paracontact structure the fundamental
2-form v is defined by Y(X,Y) = g(eX,Y), forall
X, Yel(TM).

Moreover, a almost para contact metric manifold is
normal if [¢, @]+ 2dn @ & = 0where [, @] is
denoting the Nijenhuis tensor field associated to ¢. A
normal almost para contact metric manifold is called
para contact metric manifold.
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Definition 2.1 Let M be an Lorentzian almost para
contact metric manifold is said to be an Lorentzian
almost para -Kenmotsu manifold if 1-form n are
closed (dn=0) and dyy = —2n A . A normal almost
Lorentzian para -Kenmotsu manifold M is called a
Lorentzian para -Kenmotsu manifold.

The following theorem a Lorentzian para contact
metric manifold is characterized as LP-Kenmotsu
manifold.

Theorem 2.2 Let (M, @, & 1,g) be a Lorentzian para
contact metric manifold. M is a Lorentzian para
Kenmotsu manifold if and only if

(Vx@)Y = —g(@X,Y)¢ —n(Y)pX (4)

forall X,Y € I'(TM), where V denotes the operator of
covariant differentiation with respect to the Lorentzian
metric g [10].

Corollary 2.3 Let (M, @,&,1n,g) a Lorentzian para -
Kenmotsu manifold . Then we have

Vyé = —@?X )
forall X,Yel'(TM).

3. Submanifolds of Lorentzian Para Kenmotsu
Manifold

Let M be a submanifold of a Lorentzian para-
Kenmotsu manifold M . Then Gauss and Weingarten
formulas are given by

VyY = VY +0(X,Y) (6)
ViV = —AyX + VY (7

for any X,Y € I(TM) and V € T(TM)*. o is the
second fundamental from of M, V+ is the connection
in the normal bundle and Ay is the Weingarten
endomorphism associated with V. Shape operator A
and the second fundamental form ¢ related by

90X, Y),V) = g(AvX,Y) (8)

A submanifold M of M is said to be totally geodesic if
o(X,Y)=0,forany X,Y € I'(TM).

On the other hand, the mean curvature tensor H is
defined by

H_l

m

Yik=10(ex ex) 9)

where {ey, ..., e, } is alocal orthonormal basis of TM.
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For every tangent vector field X on M we can write
X = PX+FX (10)
where PX (resp. FX) denotes the tangential (resp.
normal) component of ¢.X. Moreover for every normal
vector field V we can state
oV =BV +CV (11)

where BV (resp. CV) denotes the tangential (resp.
normal) component of gV

Forany X,Y € I'(TM), we have
9(@X,Y) = g(X, ¢Y).
From (10), we can see
g(PX + FX,Y) = g(X,PY + FY)
So we obtain
g(PX,Y) = g(X,PY).

On the other hand, forany X € I'(TM) and V €
I'(TM)* we have

9(@X,V) = g(X, V).
From (10) and (11) , we write
g(PX + FX,V) = g(X,BV + CV).
Thus ve have
g(FX, V) = g(X,BV).
Finally,forany W,V € I'(TM)* we can state
glew,V) = gW, V)

From (11), we write
gBW +CW,V) = g(W,BV + CV).

So we obtain
g(Cw,v) =g(W,CV).

We can summarize all these results by the following
proposition.

Proposition 3.1 Let (M, ¢, &,1, g) be a Lorentzian para
contact metric manifold. Then we have
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g(PX,Y) = g(X, PY),

g(ew,v) = gWw,cv),
g(FX,V) = g(X,BV).

Forany X,Y € I'(TM) and for W,V € I'(TM)*.
Suppose that & € T'(TM). Then we have

@& = PE + FE = 0.
Since TM = TM @ TM*, it is obvius that
PE=F&=0.
On the other hand ,we have

nN(eX) = g(pX,&) = g(PX + FX,§) = g(PX,§) +
g(FX, &) =n(PX) +n(FX) = 0.

And thus we get noP = noF = 0.

After following similar steps we have
©’X = (PX+FX)= @o(PX)+ @(FX)
= P2?X +FPX + BFX + CFX
= X+n()¢

Since P2X + BFX € T(TM) and FPX + CFX €
I'(TM)* we get

P2+BF=14+1nQ®¢ and FP + CF = 0.
Similar to
@2V = @(BV +CV) = @(BV) + @(CV)
= C?V + BCV + PBV + FBV
=1V,
since C?2 + FB € T(TM)* and BC + PB € T'(TM)
we get
C?> +FB=1 andBC + PB = 0.
We can summarize all these results as following.

Proposition 3.2 . Let (M, @,&1,g) be a Lorentzian
para contact metric manifold. Then we have

P& = F¢ = 0and noP = noF =0,
P2+BF=1+n®¢ andFP +CF =0,
C?> +FB=1 andBC + PB = 0.

Also defined are the covariant derivatives of the tensor
fields P,F,B, and C.
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(V,P)Y =V,PY -PV,Y (12)
(V,F)Y =VLFY -FV.,Y (13)
(V,B)V =V, BV —-BV,V (14)
(V,C)V =V CV —CV,V (15)
the covariant derivative of ¢ can be defined by
(Vx@)Y = VyoY — @VyY (16)

forany X,Y € I'(TM) and V € I'(T+M). Where V
is the Riemannian connection on M.

Now, for later use, we establish a result for a
submanifold Lorentzian para Kenmotsu manifold.

Proposition 3.3 Let M be submanifold of Lorentzian
para Kenmotsu manifold M. Then we have

(V4P)Y = ApyX + Bo(X,Y) — g(PX, V)¢ —n(Y)PX

(17)

(VxkF)Y = Co(X,Y) — h(X,PY) —n(Y)FX  (18)
(VxB)V = AcyX — PAyX — g(FX, V)¢ (19)
(VxC)V = —a(BV,X) — FA, X (20)

forall X,Y e T(TM) andV € I'(T+M).

Proposition 3.4. Let M be submanifold of Lorentzian
para Kenmotsu manifold M. Then we have the
following results:

P is parallel if and only if ApyX = AgxY, for all
X, Yel(TM) .

F is parallel if and only if A, PY = A, Y,
Ye['(TM) and V € I'(T+M).

B is parallel if and only if A;, X = PAX, for all
Xel'(TM) andV € I'(T+M).

C is parallel if and only if A,BU = —A;BV, for all
V,U € I'(T*M).

Using (5), (6), (7), and (8), we have that & is tangent
to M.

for all

Vx§ =X +n(X)$

oX,§) =0
forallX € I'(TM).

(21)

(22)

Let us now same definitions of classes submanifolds.
If F is identically zero in (10), then the submanifold
is invariant.
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If P is identically zero in (10), then the submanifold
is anti-invariant,

If there is a constant angle 6(x) € [0, g] between

@ X and TM for all nonzero vector X tangent to M
at x, the manifold is called slant.

A proper slant submanifold is one that is not invariant
or anti-invariant. i. e. As a result, the following

theorem characterized slant submanifolds of almost
contact metric manifolds;

Theorem 3.5: [2]. Let M be a slant submanifolds of
an almost contact metric manifold M such that & €
['(TM), then, M is a slant if and only if a constant A
€ [0, 1] exists such that

P2 = A(1+n®¢) (23)
furthermore, in this situation, if 6 is the slant angle of
M. Then it satisfies A = cos?6.

Corollary3.6: [ 2]. Let M be a slant submanifolds of
an almost contact metric manifold M. Then for all
X,Y € I'(TM) we have

g(PX,PY) = cos?6{g(X,Y) +n(X)n(Y)} (24)

g(FX,FY) =sin?0{g(X,Y) + n(X)n(Y)}. (25)
4, Contact Pseudo-Slant Submanifolds of
Lorentzin Para Kenmotsu Manifold

In this section, in a Lorentzian para Kenmotsu
manifold, necessary and sufficient conditions are
given for a submanifold to be a contact pseudo-slant
submanifold.

Let M be a slant submanifold of an almost Lorentzian
paracontact metric manifold M. M is said to be
pseudo-slant of M if there exit two orthogonal
distributions Dg and D+ on M such that:

TM has the orthogonal direct decomposition

TM = D@ Dy, € Dy
The distribution Dy is slant with slant angle, that is,
the slant angle between of Dgand (Dgis a
constant.The distribution D* is an anti-invariant, That
is,

@D! c T*M [12].

Let d, and d, be dimensional of distributions D+ and
Dg respectively. Then
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If d, = 0then, M is an anti-invariant submanifold.
If d;=0and 6 =0 then, M is an invariant
submanifold.

If d,=0and O e(O, g)then, M proper slant

submanifold.
Ifo = %then, M is an anti-invariant submanifold.

If dy d, #0and 0 e(O, g) then, M is a proper
pseudo-slant submanifold.

If d, d, #0 and 6 =0 then, M is a semi-invariant
submanifold.

From the definitions, we can see that a slant
submanifold is a generalization of invariant (if 6 =

0)and anti-invariant (ife = g) submanifolds.

If the orthogonal complementary of TM in T+M is
denoted by V, then the normal bundle T+M can be
decombosed as follows.

TM = FDg @ FD* @ v, FDgLFD".

Definition 4.1 A contact pseudo slant submanifold M
of a Lorentzian para-Kenmotsu manifold M is said to
be mixed-geodesic submanifold if

o(X,Y) =0 forallX € '(Dy), Y € I'(DY).

Theorem 4.2. Let M be proper contact pseudo slant
submanifold of a Lorentzian para-Kenmotsu manifold
M. M is either an anti-invariant or a mixed geodesic
if B is parallel.

Proof: Forall X € I'(Dy), Y € (DY), from (18)

and (19)
B parallel if and only if F parallel, thus VF = 0.
This implies

Co(X,Y) —o(X,PY) —n(Y)FX = 0.
Replacing X by PX in the above equation, we get

Co(PX,Y) — 6(PX,PY) =0
for Y eI’'(D}), PY = 0. Hence

Co(PX,Y) = 0.
Replacing X by PX in the above equation, we have

Co(P%X,Y) = Ccos?00(X,Y) = 0.
Hence we have either o (X,Y)=0 (M is mixed

geodesic) or 6 = %(M is anti-invariant).
Theorem 4.3. Let M be totally umbilical proper

contact pseudo slant submanidold of a Lorentzian
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para-Kenmotsu manifold M. If B is parallel, then M is
either minimal or anti-invariant submanifold.

Proof: Forall X e r(py), Y € r(Dl),from (18)
and (19), we have:

B parallel if and only if F parallel, so VF = 0.
This implies

Co(X,Y) —o(X,PY) —n(Y)FX = 0.
Replacing X by PX in the above equation, we get

Ca(PX,Y) — a(PX,PY) = 0
for y e I'(DY), PY = 0. Hence

Cao(PX,Y) =0.
Since M is totally umbilical, from (12)

Cg(PX,Y)H = 0
replacing X by PX in the above equation, we have

Cg(P?X,Y)H = Cg(PX,PY)H =
Ccos?0g(X,Y)H = 0.
Hence we have either 6 = % (M is anti-invariant) or
H = 0 (M is minimal).

Theorem 4.4. Let M be a contact pseudo slant
submanifold of a Lorentzian para-Kenmotsu manifold
M. Then D' is integrable at all times.

Proof: Forall W,U € I'(D%), from (4), we have

(Vwo)U = —g(@W,U)g — n(U)eW = 0.
By using (6), (7) , (10) and (11) we have

—ApyW + ViU — PV U — FV, U — Bo(W, U)
—Co(W,U) =0.
Comparing the tangent companents, we have

—ApyW — PV,U — Bo(W,U) =0 (26)
interchanging W and U , we get
—ApwU — PVyW — Bo(U,W) = 0. (27)

Subtracting equation (26) from (27) and using the fact
that o is symmetric , we get

AFUW - AFWU + P[W, U] = 0,
On the other hand, for all Z € T'(TM). By using (6),
(7) (8) and (16), we have

g(ApyW — ApwU, Z)
= g(G(Z, W)' FU) - g(G(U, Z), FW)
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= g(c(Z,W),FU) — g(V;U,FW)

= g(G(Z, W)' FU) + g((szU' W)

= g(c(Z,W),FU) + g(—ApyZ + VzFU, W)

= g(c(Z, W), FU) — g(ApyZ, W)

= g(c(Z,W),FU) + g(c(Z W),FU) = 0
Here

AFUW = AFWU
So, from (28), [U,W] € T'(DY), forall W,U €
r(pb). Thatis, D' is every time integrable.

Theorem 4.5. Let M be a contact pseudo slant
submanifold of a Lorentzian para-Kenmotsu manifold
M. Then the Dg is integrable if and only if

@1{VxPY — ApyX — PVyX — Bo(X,Y) + n(Y)PX}
= 0.
forall X,Y € I'(Dy).

Proof: Let @ ; and @ ,, the projections on D+ and Dg ,
respectively. Forall X,Y € I'(Dg) from (4), we have
(Vx9)Y = —g(eX, Y)E = n(Y)oX.

On applying (6), (7), (10) and (11), we get

VyPY 4 6(X, PY) — ApyX + VxFY — P VY —
FVyY — Bo(X,Y) —Co(X,Y) + g(@X, Y)& +
n(Y)eX = 0.

Comparing the tangential components
VxPY — ApyX — PVxY — Bo(X,Y) + g(@X,Y)
+n(Y)PX = 0,

VyPY — ApyX — PVyX + PVyX — PVyY — Bo(X,Y)
+g(@X,Y)E+n(Y)PX =0,

P[X,Y] = VxPY — ApyX — PVyX — Bo(X,Y) +
g(eX,Y)E + n(Y)PX (29)

X,Y € T'(Dy),[X,Y] € I'(Dg),so @ 1P[X,Y] = 0.
As aresult, we conclude our theorem by applying @ ;
to both sides of (29) equation.

Theorem 4.6. Let M be a totally umbilical contact
pseudo slant submanifold of a Lorentzian para-
Kenmotsu manifold M. Then at least one of the
following satements is true.

i)M is proper contact pseudo slant submanifold,
ii)H € I'(v),

iii) Dim (D4) = 1.

Proof: Let X € I'(D*) and using (4), we obtain

(Vxp)X = —g(eX,X)& — (X)X = 0.
On applying (6), (7), (10) and (11), we get
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—ApxX + VxFX — FVxX — Bo(X, X) — Co(X, X)
=0.
Comparing the tangential components

ApxX + Bo(X, X) = 0.
Taking the product by Z € T(D*) ,we obtain

g(ApxX,Z) + g(Bo(X,X),Z) = 0.
Because M is a totally umbilical , we get

0= g(AFXZ' X) + g(BG(X! X); Z)

=g(6(Z,X),FX) +g(c(X,X),FZ)

= g(Z,X)g(H,FX) + g(X, X)g(H,FZ)

= g(X,X)g(BH, Z) + g(Z,X)g(BH, X)
that is

g(BH,Z)X + g(BH,X)Z = 0.

Here BH is either zero or X and Z are linearly
dependent vector fields. If BH # 0, than dim (D) =
1. Otherwise H € I'(w). Since Dg # 0 M is contact
pseudo slant submanifold. Since® = 0andd;d, # 0
proper contact pseudo slant submanifold.
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