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Abstract 
The aim of the present paper is to define and study contact pseudo-slant submanifolds of lorentzian para Kenmotsu 

manifold. We investigate the geometry of leaves which arise the definition of contact pseudo-slant submanifolds of 

Lorentzian para Kenmotsu manifold and obtaine integrability conditions of distributions. We also consider parallel 

conditions of projections on study contact pseudo-slant submanifolds of Lorentzian para Kenmotsu manifold. 
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1. Introduction 

Lorentzian Kenmotsu manifolds have been defined by 

Roşca [16]. Sarı and Turgut Vanlı [17, 18] worked on 

Lorentzian Kenmotsu manifolds. In [20], Tirpathi and 

De presented a survey on Lorentzian para-contact 

manifolds. Also, some authors investigated 

Lorentzian para Kenmotsu manifolds in [4, 10, 11]. 

 

Slant submanifolds are known to generalize invariant 

and anti-invariant submanifolds, many geometers 

have expressed an interest in this research. Chen [5, 6] 

started this research on complex manifolds. Lotta[15] 

pioneered slant immersions in a almost contact metric 

manifold. Carriezo defined a new class of 

submanifolds known as hemi-slant submanifolds 

(Also known as anti-slant or pseudo-slant 

submanifolds) [3]. The contact version of a pseudo-

slant submanifold in a Sasakian manifold was then 

defined and studied by V. A. Khan and M. A. Khan. 

[12].  Later many geometers such as ([7, 13, 14,19]) 

studied pseudo-slant submanifolds on various 

manifolds.  Recently, M. Atçeken and S. Dirik studied 

contact pseudo-slant submanifold on various 

manifolds ([1,8,9]). 

 

In the light of the above studies, our article, the 

following is how this paper is structured: Section 2 

includes some fundamental formulas and definitions 

of the Lorentzian para-Kenmotsu manifold and it is 

submanifolds. Section 3 we review some definitions 

and proves some basic results on the contact pseudo-

slant submanifolds of the Lorentzian para-Kenmotsu 

manifold. Also, the final section looks at the totally 

umbilical contact pseudo-slant in Lorentzian para 

Kenmotsu manifolds. 

 

2. Lorentzian Para -Kenmotsu Manifolds 

Let 𝑀̅ be an differentiable manifold with Lorentzian 

metric g. If we have para-contact structure   (𝜑, 𝜉, 𝜂) 

on  𝑀̅ as the following:  

 

          𝜑2𝑋 = 𝑋 + 𝜂(𝑋)𝜉,     𝜂(𝜉) = −1                  (1) 

 

        𝑔(𝜑𝑋, 𝜑𝑌) = 𝑔(𝑋, 𝑌) + 𝜂(𝑋)𝜂(𝑌))               (2) 

 

        𝜑(𝜉) = 0,   𝜂𝜊𝜑 = 0, 𝜂(𝑋) = 𝑔(𝑋, 𝜉).      (3) 

 

for all 𝑋, 𝑌𝜖Γ(𝑇𝑀̅ ), where φ  is (1,1)-tensor field, ξ is 

a vector field, η is a 1-form, then 𝑀̅ is a called a 

Lorentzian almost para-contact metric manifold[20]. 

 

From definition, it is clear that 𝑔(𝜑𝑋, 𝑌) = 𝑔(𝑋, 𝜑𝑌). 

Similar to  any paracontact structure the fundamental 

2-form  ψ is defined by 𝜓(𝑋, 𝑌) = 𝑔(𝜑𝑋, 𝑌),   for all 

𝑋, 𝑌𝜖Γ(𝑇𝑀̅). 

 

Moreover, a almost para contact metric manifold is 

normal if [𝜑, 𝜑] + 2𝑑𝜂 ⊗ 𝜉 = 0 where [𝜑, 𝜑] is 

denoting the Nijenhuis tensor field associated to φ. A 

normal almost para contact metric manifold is called 

para contact metric manifold.  
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Definition 2.1 Let 𝑀̅ be an Lorentzian almost para 

contact metric manifold is said to be an Lorentzian 

almost para -Kenmotsu manifold if 1-form η  are 

closed (dη=0) and dψ = −2η ∧ ψ.  A normal almost 

Lorentzian para -Kenmotsu manifold M is called a 

Lorentzian  para -Kenmotsu manifold. 

 

The following theorem a Lorentzian para contact 

metric manifold is characterized as LP-Kenmotsu 

manifold. 

 

Theorem 2.2 Let (M̅, φ, ξ, η, g)  be a Lorentzian para 

contact metric manifold. M̅ is a Lorentzian para 

Kenmotsu manifold if and only if 

 

             (∇̅𝑋𝜑)𝑌 = −𝑔(𝜑𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝜑𝑋           (4) 

 

for all 𝑋, 𝑌 ∈ Γ(𝑇𝑀̅),  where ∇̅ denotes the operator of 

covariant differentiation with respect to the Lorentzian 

metric g [10]. 

 

Corollary 2.3 Let (M̅, φ, ξ, η, g)   a Lorentzian  para -

Kenmotsu manifold . Then we have 

 

                              ∇̅𝑋𝜉 = −𝜑2𝑋                             (5) 

 

for all 𝑋, 𝑌𝜖Γ(𝑇𝑀). 

 

3. Submanifolds of Lorentzian Para Kenmotsu 

Manifold 

Let  𝑀 be a submanifold of a Lorentzian para-

Kenmotsu manifold  M̅ . Then Gauss and Weingarten 

formulas are given by 

 

                      ∇̅𝑋𝑌 = ∇XY + σ(X, Y)      (6) 

 

                      ∇̅𝑋𝑉 = −AVX + ∇X
⊥Y      (7) 

 

for any 𝑋, 𝑌 ∈ Γ(𝑇𝑀) and
 

𝑉 ∈ Γ(𝑇𝑀)⊥. σ is the 

second fundamental from of 𝑀, ∇⊥ is the connection 

in the normal bundle and AV is the Weingarten 

endomorphism associated with V.  Shape operator A 

and the second fundamental form σ  related by 

 

       𝑔(𝜎(𝑋, 𝑌), 𝑉) = 𝑔(AV𝑋, 𝑌)     (8) 

 

A submanifold 𝑀 of M̅ is said to be totally geodesic if 

𝜎(𝑋, 𝑌) = 0, for any 𝑋, 𝑌 ∈ Γ(𝑇𝑀). 
On the other hand, the mean curvature tensor H is 

defined by  

 

𝐻 =
1

𝑚
∑ 𝜎(𝑒𝑘 , 𝑒𝑘)𝑚

𝑘=1             (9) 

 

where {𝑒1, … , 𝑒𝑚}  is a local orthonormal basis of 𝑇𝑀. 

 

For every tangent vector field 𝑋 on 𝑀 we can write 

𝜑𝑋 = 𝑃𝑋 + 𝐹𝑋                      (10) 

where 𝑃𝑋 (resp. 𝐹𝑋) denotes the tangential (resp. 

normal) component of 𝜑𝑋. Moreover for every normal 

vector field 𝑉 we can state   

 

𝜑𝑉 = 𝐵𝑉 + 𝐶𝑉                              (11) 

 

where 𝐵𝑉 (resp. 𝐶𝑉) denotes the tangential (resp. 

normal) component of 𝜑𝑉. 

 

For any 𝑋, 𝑌 ∈ Γ(𝑇𝑀), we have 

 

𝑔(𝜑𝑋, 𝑌) = 𝑔(𝑋, 𝜑𝑌). 

 

From (10), we can see   

 

𝑔(𝑃𝑋 + 𝐹𝑋, 𝑌) = 𝑔(𝑋, 𝑃𝑌 + 𝐹𝑌) 
 

So we obtain 

 

𝑔(𝑃𝑋, 𝑌) = 𝑔(𝑋, 𝑃𝑌). 

 

On the other hand, for any 𝑋 ∈ Γ(𝑇𝑀) and 
 
𝑉 ∈

Γ(𝑇𝑀)⊥ we have  

 

𝑔(𝜑𝑋, 𝑉) = 𝑔(𝑋, 𝜑𝑉). 

 

From (10) and (11) , we write  

 

𝑔(𝑃𝑋 + 𝐹𝑋, 𝑉) = 𝑔(𝑋, 𝐵𝑉 + 𝐶𝑉). 
 

Thus ve have 

 

𝑔(𝐹𝑋, 𝑉) = 𝑔(𝑋, 𝐵𝑉). 
 

Finally,for any   𝑊, 𝑉 ∈ 𝛤(𝑇𝑀)⊥ we can state 

 

𝑔(𝜑𝑊, 𝑉) = 𝑔(𝑊, 𝜑𝑉) 

 

From (11), we write  

𝑔(𝐵𝑊 + 𝐶𝑊, 𝑉) = 𝑔(𝑊, 𝐵𝑉 + 𝐶𝑉). 

 

So we obtain 

 

𝑔(𝐶𝑊, 𝑉) = 𝑔(𝑊, 𝐶𝑉). 

 

We can summarize all these results by the following 

proposition. 

 

Proposition 3.1 Let (M̅, φ, ξ, η, g)  be a Lorentzian para 

contact metric manifold. Then  we have  
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𝑔(𝑃𝑋, 𝑌) = 𝑔(𝑋, 𝑃𝑌), 

 

𝑔(𝐶𝑊, 𝑉) = 𝑔(𝑊, 𝐶𝑉), 

𝑔(𝐹𝑋, 𝑉) = 𝑔(𝑋, 𝐵𝑉). 
 

For any 𝑋, 𝑌 ∈ Γ(𝑇𝑀) 𝑎𝑛𝑑 for  W,
 
𝑉 ∈ Γ(𝑇𝑀)⊥. 

Suppose that 𝜉 ∈ Γ(𝑇𝑀). Then we have  

 

𝜑𝜉 = 𝑃𝜉 + 𝐹𝜉 = 0. 
 

Since 𝑇𝑀̅̅̅̅̅ = 𝑇𝑀 ⊕ 𝑇𝑀⊥, it is obvius that  

 

𝑃𝜉 = 𝐹𝜉 = 0. 

 

On the other hand ,we have 

 

η(𝜑𝑋) = 𝑔(𝜑𝑋, 𝜉) =  𝑔(𝑃𝑋 + 𝐹𝑋, 𝜉) = 𝑔(𝑃𝑋, 𝜉) +
 𝑔(𝐹𝑋, 𝜉) = η(𝑃𝑋) + η(𝐹𝑋) = 0. 

 

And thus we get 𝜂𝑜𝑃 = 𝜂𝑜𝐹 = 0. 
 

After following similar steps we have 

 

𝜑2𝑋 = 𝜑(𝑃𝑋 + 𝐹𝑋) =    𝜑(𝑃𝑋) + 𝜑(𝐹𝑋)
=    𝑃2𝑋 + 𝐹𝑃𝑋 + 𝐵𝐹𝑋 + 𝐶𝐹𝑋
=   𝑋 + 𝜂(𝑋)𝜉                                                     

 

Since  𝑃2𝑋 + 𝐵𝐹𝑋 ∈ Γ(𝑇𝑀)  and     𝐹𝑃𝑋 + 𝐶𝐹𝑋 ∈
Γ(𝑇𝑀)⊥ we get 

 

𝑃2 + 𝐵𝐹 = 𝐼 + 𝜂 ⊗ 𝜉   and 𝐹𝑃 + 𝐶𝐹 = 0. 

 

Similar to 

𝜑2𝑉 = 𝜑(𝐵𝑉 + 𝐶𝑉) =   𝜑(𝐵𝑉) + 𝜑(𝐶𝑉)
=  𝐶2𝑉 + 𝐵𝐶𝑉 + 𝑃𝐵𝑉 + 𝐹𝐵𝑉
= 𝑉,                                                    

since 𝐶2  + 𝐹𝐵 ∈ Γ(𝑇𝑀)⊥  and 𝐵𝐶 + 𝑃𝐵 ∈ Γ(𝑇𝑀) 

we get 

 

𝐶2  + 𝐹𝐵 = 𝐼   and 𝐵𝐶 + 𝑃𝐵 = 0. 
 

We can summarize all these results as following. 

 

Proposition 3.2 . Let (M̅, φ, ξ, η, g)  be a Lorentzian 

para contact metric manifold. Then  we have  

 

𝑃𝜉 = 𝐹𝜉 = 0 and 𝜂𝑜𝑃 = 𝜂𝑜𝐹 = 0, 
 

𝑃2 + 𝐵𝐹 = 𝐼 + 𝜂 ⊗ 𝜉   and 𝐹𝑃 + 𝐶𝐹 = 0, 

 

𝐶2  + 𝐹𝐵 = 𝐼   and 𝐵𝐶 + 𝑃𝐵 = 0. 
 

Also defined are the covariant derivatives of the tensor 

fields 𝑃, 𝐹, 𝐵, and 𝐶. 

 

( )X X XP Y PY P Y                (12) 

( )X X XF Y FY F Y                (13) 

( )X X XB V BV B V                 (14) 

( )X X XC V CV C V                  (15) 

 

the covariant derivative of φ  can be defined by 

 

 (∇̅𝑋𝜑)𝑌 = ∇̅𝑋𝜑𝑌 − 𝜑∇̅𝑋𝑌               (16) 

 

for any 𝑋, 𝑌 ∈ 𝛤(𝑇𝑀) and  𝑉 ∈ 𝛤(𝑇⊥𝑀). Where ̃ 

is the Riemannian connection on M̅. 

 

Now, for later use, we establish a result for a 

submanifold Lorentzian para Kenmotsu manifold. 

 

Proposition 3.3  Let M be submanifold of  Lorentzian 

para  Kenmotsu manifold M̅. Then we have  

 

(∇𝑋𝑃)𝑌 = A𝐹𝑌X + Bσ(X, Y) − 𝑔(𝑃𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝑃𝑋        
                                                                              (17) 

 
(∇𝑋𝐹)𝑌 = Cσ(X, Y) − ℎ(𝑋, 𝑃𝑌) − 𝜂(𝑌)𝐹𝑋         (18) 

 

    (𝛻𝑋𝐵)𝑉 = 𝐴𝐶𝑉𝑋 − 𝑃𝐴𝑉𝑋 − 𝑔(𝐹𝑋, 𝑉)𝜉           (19) 

 

     (𝛻𝑋𝐶)𝑉 = −𝜎(𝐵𝑉, 𝑋) − 𝐹𝐴𝑉𝑋                       (20) 

 

 for all 𝑋, 𝑌 ∈ Γ(𝑇𝑀)  and 𝑉 ∈ 𝛤(𝑇⊥𝑀). 

 

Proposition 3.4. Let M be submanifold of Lorentzian 

para Kenmotsu manifold M̅. Then we have the 

following results: 

 

𝑃 is parallel if and only if A𝐹𝑌X = A𝐹𝑋Y, for all 

𝑋, 𝑌𝜖Γ(𝑇𝑀) .  
𝐹 is parallel if and only if A𝑉PY = A𝐶𝑉Y,    for all 

𝑌𝜖Γ(𝑇𝑀)  and 𝑉 ∈ 𝛤(𝑇⊥𝑀). 

𝐵 is parallel if and only if A𝐶𝑉X = PA𝑉X, for all 

𝑋𝜖Γ(𝑇𝑀)  and 𝑉 ∈ 𝛤(𝑇⊥𝑀). 

𝐶 is parallel if and only if A𝑉BU = −A𝑈BV, for all 

𝑉, 𝑈 ∈ 𝛤(𝑇⊥𝑀). 

Using (5), (6), (7), and (8), we have that  is tangent 

to 𝑀. 
                             𝛻𝑋𝜉 = 𝑋 + 𝜂(𝑋)𝜉                     (21) 

 

𝜎(X, 𝜉) = 0                           (22) 

for all𝑋 ∈ 𝛤(𝑇𝑀). 

  

Let us now same definitions of classes submanifolds. 

If 𝐹 is identically zero in (10), then the submanifold 

is invariant.  
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If 𝑃 is identically zero in (10), then the submanifold 

is anti-invariant,  

If there is a constant angle  𝜃(𝑥) ∈ [0,
𝜋

2
] between  

X and 𝑇𝑀 for all nonzero vector X  tangent to 𝑀 

at x, the manifold is called slant. 

A proper slant submanifold is one that is not invariant 

or anti-invariant. i. e. As a result, the following 

theorem characterized slant submanifolds of almost 

contact metric manifolds; 

 

Theorem 3.5: [2 ].  Let 𝑀 be a slant submanifolds of 

an almost contact metric manifold 𝑀̅ such that  ∈ 

Γ(TM),   then, 𝑀 is a slant  if and only if a constant λ 

∈ [0, 1]  exists such that 

 

               𝑃2 = λ(I + η )                       (23) 

 

furthermore, in this situation, if 𝜃 is the slant angle of 

𝑀. Then it satisfies λ =  cos2𝜃.  

 

Corollary3.6: [ 2]. Let 𝑀 be a slant submanifolds of 

an almost contact metric manifold 𝑀̅. Then for all 

𝑋, 𝑌 ∈  𝛤(𝑇𝑀) we have 

 

     𝑔(𝑃𝑋, 𝑃𝑌) = cos2𝜃{𝑔(𝑋, 𝑌) + 𝜂(𝑋)𝜂(𝑌)}     (24) 

 

    𝑔(𝐹𝑋, 𝐹𝑌) = sin2𝜃{𝑔(𝑋, 𝑌) + 𝜂(𝑋)𝜂(𝑌)}.     (25) 

 

4. Contact Pseudo-Slant Submanifolds of 

Lorentzin Para Kenmotsu Manifold 

In this section, in a Lorentzian para Kenmotsu 

manifold, necessary and sufficient conditions are 

given for a submanifold to be a contact pseudo-slant 

submanifold. 

 

Let 𝑀 be a slant submanifold of an almost Lorentzian 

paracontact metric manifold 𝑀̅.   𝑀 is said to be 

pseudo-slant of 𝑀̅ if there exit two orthogonal 

distributions Dθ and  D on 𝑀 such that: 

 

𝑇𝑀 has the orthogonal direct decomposition 

 

𝑇𝑀 =  𝐷 ⊕  𝐷𝜃, 𝜉 ∈  𝐷𝜃 

The distribution  D𝜃 is slant  with slant angle, that is, 

the slant angle between of  Dθ and  φDθis a 

constant.The distribution  D is an anti-invariant, That 

is,  

 

φD ⊂ TM [12]. 

 

Let 𝑑1 and 𝑑2 be dimensional of distributions 𝐷 and 

𝐷𝜃 respectively. Then 

 

If 𝑑2  0 then, 𝑀 is an anti-invariant submanifold. 

If 𝑑1 0 and   0 then, 𝑀 is an invariant 

submanifold.  

If 𝑑1 0 and  (0,
𝜋

2
)then, 𝑀 proper slant 

submanifold. 

If 𝜃 =  
𝜋

2
 then, 𝑀 is an anti-invariant submanifold.  

If 𝑑1 𝑑2  0 and  (0,
𝜋

2
)  then, 𝑀 is a proper 

pseudo-slant submanifold.  

 If 𝑑1 𝑑2  0  and   0 then, 𝑀 is a semi-invariant 

submanifold. 

 

From the definitions, we can see that a slant 

submanifold is a generalization of invariant (if 𝜃 =

 0)and anti-invariant (if 𝜃 =  
𝜋

2
) submanifolds. 

If the orthogonal complementary of 𝜑𝑇𝑀 in T𝑀 is 

denoted by 𝑉, then the normal bundle T𝑀 can be 

decombosed as follows. 

 

TM = FDθ ⊕ FD ⊕ ν,   FDθFD. 
 

Definition 4.1  A contact pseudo slant submanifold 𝑀 

of a Lorentzian para-Kenmotsu manifold  𝑀̅  is said to 

be mixed-geodesic submanifold if  

 𝜎(𝑋, 𝑌) = 0  for all 𝑋 ∈ 𝛤(𝐷𝜃),   𝑌 ∈ 𝛤(𝐷⊥). 

 

Theorem 4.2. Let 𝑀 be proper contact pseudo slant 

submanifold of a Lorentzian para-Kenmotsu manifold 

𝑀̅. 𝑀 is either an anti-invariant  or a mixed geodesic  

if 𝐵 is parallel. 

 

Proof: For all    𝑋 ∈ 𝛤(𝐷𝜃),    𝑌 ∈ 𝛤(𝐷⊥),   from (18) 

and (19) 

B parallel if and only  if 𝐹 parallel, thus F = 0. 

This implies  

 

𝐶𝜎(𝑋, 𝑌) − 𝜎(𝑋, 𝑃𝑌) − 𝜂(𝑌)𝐹𝑋 = 0. 

Replacing X   by 𝑃𝑋 in the above equation, we get 

 

𝐶𝜎(𝑃𝑋, 𝑌) − 𝜎(𝑃𝑋, 𝑃𝑌) = 0 

for Y  ∈ Γ(D),  𝑃𝑌 = 0. Hence 

 

𝐶𝜎(𝑃𝑋, 𝑌) = 0. 

Replacing X   by 𝑃𝑋 in the above equation, we have 

 

𝐶𝜎(𝑃2𝑋, 𝑌) = 𝐶cos2𝜃𝜎(𝑋, 𝑌) = 0. 

Hence we have either   ( , ) 0X Y    (𝑀 is mixed 

geodesic) or 𝜃 =  
𝜋

2
 (𝑀 is anti-invariant). 

 

Theorem 4.3. Let 𝑀 be  totally umbilical  proper 

contact pseudo slant submanidold of a Lorentzian 
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para-Kenmotsu manifold 𝑀̅. If 𝐵 is parallel, then 𝑀 is 

either minimal or anti-invariant submanifold. 

 

Proof: For all  X ∈  𝛤(𝐷𝜃), Y ∈  𝛤(𝐷), from (18) 

and (19), we have: 

𝐵 parallel if and only  if F parallel, so F = 0. 
This implies  

 

𝐶𝜎(𝑋, 𝑌) − 𝜎(𝑋, 𝑃𝑌) − 𝜂(𝑌)𝐹𝑋 = 0. 

Replacing X   by 𝑃𝑋 in the above equation, we get 

 

𝐶𝜎(𝑃𝑋, 𝑌) − 𝜎(𝑃𝑋, 𝑃𝑌) = 0 

for Y ∈ Γ(D),  𝑃𝑌 = 0. Hence 

 

𝐶𝜎(𝑃𝑋, 𝑌) = 0. 

Since 𝑀 is totally umbilical, from (12) 

 

𝐶𝑔(𝑃𝑋, 𝑌)𝐻 = 0 

replacing X   by 𝑃𝑋 in the above equation, we have 

 

𝐶𝑔(𝑃2𝑋, 𝑌)𝐻 = 𝐶𝑔(𝑃𝑋, 𝑃𝑌)𝐻 =
𝐶cos2𝜃𝑔(𝑋, 𝑌)𝐻 = 0. 

Hence we have either 𝜃 =  
𝜋

2
 (𝑀 is anti-invariant) or 

𝐻 = 0 (𝑀 is minimal). 

 

Theorem 4.4. Let 𝑀 be a contact pseudo slant 

submanifold of a Lorentzian para-Kenmotsu manifold 

𝑀̅.  Then  D is integrable at all times. 

 

Proof: For all 𝑊, 𝑈 ∈  𝛤(𝐷), from (4), we have  

 

(∇̅𝑊)U = −g(φW, U) − (U)φW = 0. 
By using (6), (7) , (10) and (11) we have 

 

−AFUW + 𝑊
 U − PWU − FWU −  B(𝑊, 𝑈)

− C(𝑊, 𝑈) = 0. 
Comparing the tangent companents, we have 

 

−AFUW − PWU −  B(𝑊, 𝑈) = 0           (26) 

interchanging 𝑊 and 𝑈 , we get 

 

−AFWU − PUW −  B(𝑈, 𝑊) = 0 .          (27) 

Subtracting equation (26) from (27) and using the fact 

that  is symmetric , we get 

 

AFUW − AFWU + P[𝑊, 𝑈] = 0, 
 

P[𝑈, 𝑊] = AFUW − AFWU.              (28) 

On the other hand, for all 𝑍 ∈ Γ(𝑇𝑀). By using (6), 

(7) (8) and (16), we have 

 

g(AFUW − AFWU, Z) 

= 𝑔((Z, W), FU) − 𝑔((𝑈, 𝑍), 𝐹𝑊) 

          = 𝑔((Z, W), FU) − 𝑔(̃ZU, 𝐹𝑊)  

          = 𝑔((Z, W), FU) + 𝑔(̃ZU, 𝑊)  

          = 𝑔((Z, W), FU) + 𝑔(−AFUZ + 𝑍
FU, 𝑊) 

          = 𝑔((Z, W), FU) − 𝑔(AFUZ, 𝑊)  

= 𝑔((Z, W), FU) + 𝑔((Z, W), FU) = 0 
Here 

 

AFUW = AFWU. 
So, from (28),  [𝑈, 𝑊] ∈  Γ(D) ,  for all 𝑊, 𝑈 ∈
 𝛤(𝐷).   That is,  D is every time integrable. 

 

Theorem 4.5. Let 𝑀 be a contact pseudo slant 

submanifold of a Lorentzian para-Kenmotsu manifold 

𝑀̅. Then the  Dθ is integrable if and only if 

 

𝜛1{XPY − AFYX − PYX −  B(𝑋, 𝑌) + (Y)PX}
= 0. 

for all 𝑋, 𝑌 ∈  𝛤(𝐷𝜃). 
Proof: Let ϖ 1 and ϖ 2 the projections on D and Dθ , 

respectively. For all 𝑋, 𝑌 ∈  𝛤(𝐷𝜃) from (4), we have 

(∇̅𝑋)Y = −g(φX, Y) − (Y)φX. 
On applying (6), (7), (10) and (11), we get 

 

                

  XPY + (𝑋, 𝑃𝑌) − AFYX + 𝑋
FY − P XY −

 FXY − B(𝑋, 𝑌) −C(𝑋, 𝑌) + g(φX, Y) +
(Y)φX = 0. 
Comparing the tangential components 

XPY − AFYX − PXY −  B(𝑋, 𝑌) + g(φX, Y)
+ (Y)PX = 0, 

 

XPY − AFYX − PYX + PYX − PXY −  B(𝑋, 𝑌)
+ g(φX, Y) + (Y)PX = 0 , 

 

𝑃[𝑋, 𝑌] = XPY − AFYX − PYX −  B(𝑋, 𝑌) +
                        g(φX, Y) + (Y)PX                    (29) 

 

𝑋, 𝑌 ∈  𝛤(𝐷𝜃), [𝑋, 𝑌]  ∈  𝛤(𝐷𝜃), 𝑠𝑜 𝜛 1𝑃[𝑋, 𝑌] = 0. 
As a result, we conclude our theorem by applying  ϖ 1 

to both sides of (29) equation. 

 

Theorem 4.6. Let 𝑀 be a totally umbilical contact 

pseudo slant submanifold of a Lorentzian  para-

Kenmotsu manifold 𝑀̅.  Then at least one of the 

following satements is true. 

 

i)𝑀 is proper contact pseudo slant submanifold, 

ii) 𝐻 ∈  𝛤(𝜈), 
iii) 𝐷𝑖𝑚 (𝐷) = 1. 
Proof: Let 𝑋 ∈  𝛤(𝐷) and using (4), we obtain  

 

(∇̅𝑋)X = −g(φX, X) − (X)φX = 0. 

On applying (6), (7), (10) and (11), we get 
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−AFXX + 𝑋
FX −  FXX − B(𝑋, 𝑋) − C(𝑋, 𝑋)

= 0. 
Comparing the tangential components 

 

AFXX + B(𝑋, 𝑋) = 0. 
Taking the product by Z ∈ Γ(D) ,we obtain 

 

g(AFXX, Z) + g(B(𝑋, 𝑋), 𝑍) = 0. 
Because 𝑀 is a totally umbilical , we get 

 

            0 = g(AFXZ, X) + g(B(𝑋, 𝑋), 𝑍) 

= g((𝑍, 𝑋), 𝐹𝑋) + g((𝑋, 𝑋), 𝐹𝑍) 

     = g(𝑍, 𝑋)g(𝐻, 𝐹𝑋) + g(𝑋, 𝑋)g(𝐻, 𝐹𝑍) 

      =  g(𝑋, 𝑋)g(𝐵𝐻, 𝑍) + g(𝑍, 𝑋)g(𝐵𝐻, 𝑋) 

that is 

g(𝐵𝐻, 𝑍)X + g(𝐵𝐻, 𝑋)𝑍 = 0. 

Here 𝐵𝐻 is either zero or 𝑋 and 𝑍 are linearly 

dependent vector fields. If 𝐵𝐻 ≠  0, than dim (D) =
1.  Otherwise 𝐻 ∈  𝛤(µ). Since Dθ ≠  0 M is contact 

pseudo slant submanifold. Since θ ≠  0 and d1d2 ≠  0 

proper contact pseudo slant submanifold. 
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