Journal of Engineering Research and Applied Science Available at www.journaleras.com Volume 12 (2), December 2023, pp 2301-2306 ISSN 2147-3471 © 2023

Contact Pseudo-Slant Submanifolds of Lorentzian Para Kenmotsu Manifold

Süleyman Dirik¹, Ramazan Sari^{2,*}

¹Department of Mathematics, Faculty of Arts and Sciences, Amasya University, Amasya, Turkey ²Department of Mathematics, Faculty of Arts and Sciences, Amasya University, Amasya, Turkey

Accepted 24 July 2023

Abstract

The aim of the present paper is to define and study contact pseudo-slant submanifolds of lorentzian para Kenmotsu manifold. We investigate the geometry of leaves which arise the definition of contact pseudo-slant submanifolds of Lorentzian para Kenmotsu manifold and obtaine integrability conditions of distributions. We also consider parallel conditions of projections on study contact pseudo-slant submanifolds of Lorentzian para Kenmotsu manifold.

Keywords: Lorentzian para -Kenmotsu manifold, contact pseudo-slant submanifolds

1. Introduction

Lorentzian Kenmotsu manifolds have been defined by Roşca [16]. Sarı and Turgut Vanlı [17, 18] worked on Lorentzian Kenmotsu manifolds. In [20], Tirpathi and De presented a survey on Lorentzian para-contact manifolds. Also, some authors investigated Lorentzian para Kenmotsu manifolds in [4, 10, 11].

Slant submanifolds are known to generalize invariant and anti-invariant submanifolds, many geometers have expressed an interest in this research. Chen [5, 6] started this research on complex manifolds. Lotta[15] pioneered slant immersions in a almost contact metric manifold. Carriezo defined a new class of submanifolds known as hemi-slant submanifolds (Also known as anti-slant or pseudo-slant submanifolds) [3]. The contact version of a pseudoslant submanifold in a Sasakian manifold was then defined and studied by V. A. Khan and M. A. Khan. [12]. Later many geometers such as ([7, 13, 14, 19]) studied pseudo-slant submanifolds on various manifolds. Recently, M. Atçeken and S. Dirik studied contact pseudo-slant submanifold on various manifolds ([1,8,9]).

In the light of the above studies, our article, the following is how this paper is structured: Section 2 includes some fundamental formulas and definitions of the Lorentzian para-Kenmotsu manifold and it is submanifolds. Section 3 we review some definitions and proves some basic results on the contact pseudo-

slant submanifolds of the Lorentzian para-Kenmotsu manifold. Also, the final section looks at the totally umbilical contact pseudo-slant in Lorentzian para Kenmotsu manifolds.

2. Lorentzian Para -Kenmotsu Manifolds

Let \overline{M} be an differentiable manifold with Lorentzian metric g. If we have para-contact structure (φ, ξ, η) on \overline{M} as the following:

$$\varphi^2 X = X + \eta(X)\xi, \quad \eta(\xi) = -1$$
 (1)

$$g(\varphi X, \varphi Y) = g(X, Y) + \eta(X)\eta(Y))$$
(2)

$$\varphi(\xi) = 0, \ \eta o \varphi = 0, \ \eta(X) = g(X, \xi).$$
 (3)

for all $X, Y \in \Gamma(T\overline{M})$, where φ is (1,1)-tensor field, ξ is a vector field, η is a 1-form, then \overline{M} is a called a Lorentzian almost para-contact metric manifold[20].

From definition, it is clear that $g(\varphi X, Y) = g(X, \varphi Y)$. Similar to any paracontact structure the fundamental 2-form ψ is defined by $\psi(X, Y) = g(\varphi X, Y)$, for all $X, Y \in \Gamma(T\overline{M})$.

Moreover, a almost para contact metric manifold is normal if $[\varphi, \varphi] + 2d\eta \otimes \xi = 0$ where $[\varphi, \varphi]$ is denoting the Nijenhuis tensor field associated to φ . A normal almost para contact metric manifold is called para contact metric manifold. Definition 2.1 Let \overline{M} be an Lorentzian almost para contact metric manifold is said to be an Lorentzian almost para -Kenmotsu manifold if 1-form η are closed (d η =0) and d ψ = $-2\eta \wedge \psi$. A normal almost Lorentzian para -Kenmotsu manifold M is called a Lorentzian para -Kenmotsu manifold.

The following theorem a Lorentzian para contact metric manifold is characterized as LP-Kenmotsu manifold.

Theorem 2.2 Let $(\overline{M}, \varphi, \xi, \eta, g)$ be a Lorentzian para contact metric manifold. \overline{M} is a Lorentzian para Kenmotsu manifold if and only if

$$(\overline{\nabla}_X \varphi)Y = -g(\varphi X, Y)\xi - \eta(Y)\varphi X \tag{4}$$

for all $X, Y \in \Gamma(T\overline{M})$, where $\overline{\nabla}$ denotes the operator of covariant differentiation with respect to the Lorentzian metric g [10].

Corollary 2.3 Let $(\overline{M}, \varphi, \xi, \eta, g)$ a Lorentzian para - Kenmotsu manifold . Then we have

$$\overline{\nabla}_X \xi = -\varphi^2 X \tag{5}$$

for all *X*, $Y \in \Gamma(TM)$.

3. Submanifolds of Lorentzian Para Kenmotsu Manifold

Let M be a submanifold of a Lorentzian para-Kenmotsu manifold \overline{M} . Then Gauss and Weingarten formulas are given by

$$\overline{\nabla}_X Y = \nabla_X Y + \sigma(X, Y) \tag{6}$$

$$\overline{\nabla}_X V = -A_V X + \nabla_X^{\perp} Y \tag{7}$$

for any $X, Y \in \Gamma(TM)$ and $V \in \Gamma(TM)^{\perp}$. σ is the second fundamental from of M, ∇^{\perp} is the connection in the normal bundle and A_V is the Weingarten endomorphism associated with *V*. Shape operator *A* and *t*he second fundamental form σ related by

$$g(\sigma(X,Y),V) = g(A_V X,Y)$$
(8)

A submanifold *M* of \overline{M} is said to be totally geodesic if $\sigma(X, Y) = 0$, for any $X, Y \in \Gamma(TM)$.

On the other hand, the mean curvature tensor H is defined by

$$H = \frac{1}{m} \sum_{k=1}^{m} \sigma(e_k, e_k) \tag{9}$$

where $\{e_1, \dots, e_m\}$ is a local orthonormal basis of TM.

For every tangent vector field X on M we can write $\varphi X = PX + FX$ (10) where PX (resp. FX) denotes the tangential (resp. normal) component of φX . Moreover for every normal vector field V we can state

$$\varphi V = BV + CV \tag{11}$$

where BV (resp. CV) denotes the tangential (resp. normal) component of φV .

For any $X, Y \in \Gamma(TM)$, we have

$$g(\varphi X, Y) = g(X, \varphi Y).$$

From (10), we can see

$$g(PX + FX, Y) = g(X, PY + FY)$$

So we obtain

$$g(PX,Y) = g(X,PY).$$

On the other hand, for any $X \in \Gamma(TM)$ and $V \in \Gamma(TM)^{\perp}$ we have

$$g(\varphi X, V) = g(X, \varphi V).$$

From (10) and (11), we write

$$g(PX + FX, V) = g(X, BV + CV).$$

Thus ve have

$$g(FX,V) = g(X,BV).$$

Finally, for any $W, V \in \Gamma(TM)^{\perp}$ we can state

$$g(\varphi W, V) = g(W, \varphi V)$$

From (11), we write g(BW + CW, V) = g(W, BV + CV).

So we obtain

$$g(CW,V) = g(W,CV).$$

We can summarize all these results by the following proposition.

Proposition 3.1 Let $(\overline{M}, \varphi, \xi, \eta, g)$ be a Lorentzian para contact metric manifold. Then we have

$$g(PX,Y) = g(X,PY),$$

$$g(CW,V) = g(W,CV),$$

$$g(FX,V) = g(X,BV).$$

For any $X, Y \in \Gamma(TM)$ and for $W, V \in \Gamma(TM)^{\perp}$. Suppose that $\xi \in \Gamma(TM)$. Then we have

$$\varphi\xi = P\xi + F\xi = 0.$$

Since $\overline{TM} = TM \oplus TM^{\perp}$, it is obvius that

$$P\xi = F\xi = 0.$$

On the other hand ,we have

$$\eta(\varphi X) = g(\varphi X, \xi) = g(PX + FX, \xi) = g(PX, \xi) + g(FX, \xi) = \eta(PX) + \eta(FX) = 0.$$

And thus we get $\eta o P = \eta o F = 0$.

After following similar steps we have

$$\varphi^{2}X = \varphi(PX + FX) = \varphi(PX) + \varphi(FX)$$

= $P^{2}X + FPX + BFX + CFX$
= $X + \eta(X)\xi$

Since $P^2X + BFX \in \Gamma(TM)$ and $FPX + CFX \in \Gamma(TM)^{\perp}$ we get

$$P^2 + BF = I + \eta \otimes \xi$$
 and $FP + CF = 0$.

Similar to

$$\varphi^{2}V = \varphi(BV + CV) = \varphi(BV) + \varphi(CV)$$

= $C^{2}V + BCV + PBV + FBV$
= V ,
since $C^{2} + FB \in \Gamma(TM)^{\perp}$ and $BC + PB \in \Gamma(TM)$
we get

$$C^2 + FB = I$$
 and $BC + PB = 0$.

We can summarize all these results as following.

Proposition 3.2 . Let $(\overline{M}, \phi, \xi, \eta, g)$ be a Lorentzian para contact metric manifold. Then we have

$$P\xi = F\xi = 0$$
 and $\eta oP = \eta oF = 0$,

$$P^2 + BF = I + \eta \otimes \xi$$
 and $FP + CF = 0$,

$$C^2 + FB = I$$
 and $BC + PB = 0$.

Also defined are the covariant derivatives of the tensor fields P, F, B, and C.

$$(\nabla_X P)Y = \nabla_X PY - P\nabla_X Y \tag{12}$$

$$(\nabla_{X}F)Y = \nabla_{X}^{\perp}FY - F\nabla_{X}Y \tag{13}$$

$$(\nabla_{Y}B)V = \nabla_{Y}BV - B\nabla_{Y}^{\perp}V \tag{14}$$

$$(\nabla_{X}C)V = \nabla_{X}^{\perp}CV - C\nabla_{X}^{\perp}V$$
(15)

the covariant derivative of ϕ can be defined by

$$(\overline{\nabla}_X \varphi) Y = \overline{\nabla}_X \varphi Y - \varphi \overline{\nabla}_X Y \tag{16}$$

for any $X, Y \in \Gamma(TM)$ and $V \in \Gamma(T^{\perp}M)$. Where $\tilde{\nabla}$ is the Riemannian connection on \overline{M} .

Now, for later use, we establish a result for a submanifold Lorentzian para Kenmotsu manifold.

Proposition 3.3 Let M be submanifold of Lorentzian para Kenmotsu manifold \overline{M} . Then we have

$$(\nabla_X P)Y = A_{FY}X + B\sigma(X,Y) - g(PX,Y)\xi - \eta(Y)PX$$
(17)

$$(\nabla_X F)Y = C\sigma(X, Y) - h(X, PY) - \eta(Y)FX$$
(18)

$$(\nabla_X B)V = A_{CV}X - PA_VX - g(FX, V)\xi$$
(19)

$$(\nabla_X C)V = -\sigma(BV, X) - FA_V X \tag{20}$$

for all $X, Y \in \Gamma(TM)$ and $V \in \Gamma(T^{\perp}M)$.

Proposition 3.4. Let M be submanifold of Lorentzian para Kenmotsu manifold \overline{M} . Then we have the following results:

P is parallel if and only if $A_{FY}X = A_{FX}Y$, for all *X*, $Y \in \Gamma(TM)$. *F* is parallel if and only if $A_V PY = A_{CV}Y$, for all $Y \in \Gamma(TM)$ and $V \in \Gamma(T^{\perp}M)$. *B* is parallel if and only if $A_{CV}X = PA_VX$, for all $X \in \Gamma(TM)$ and $V \in \Gamma(T^{\perp}M)$. *C* is parallel if and only if $A_V BU = -A_U BV$, for all $V, U \in \Gamma(T^{\perp}M)$. Using (5), (6), (7), and (8), we have that ξ is tangent to *M*. (21)

$$V_X\xi = X + \eta(X)\xi \tag{21}$$

$$\sigma(\mathbf{X},\xi) = 0 \tag{22}$$

for all $X \in \Gamma(TM)$.

Let us now same definitions of classes submanifolds. If F is identically zero in (10), then the submanifold is invariant.

If P is identically zero in (10), then the submanifold is anti-invariant,

If there is a constant angle $\theta(x) \in \left[0, \frac{\pi}{2}\right]$ between φX and *TM* for all nonzero vector *X* tangent to *M* at x, the manifold is called slant.

A proper slant submanifold is one that is not invariant or anti-invariant. i. e. As a result, the following theorem characterized slant submanifolds of almost contact metric manifolds;

Theorem 3.5: [2]. Let *M* be a slant submanifolds of an almost contact metric manifold \overline{M} such that $\xi \in \Gamma(TM)$, then, *M* is a slant if and only if a constant $\lambda \in [0, 1]$ exists such that

$$P^2 = \lambda (\mathbf{I} + \eta \otimes \xi) \tag{23}$$

furthermore, in this situation, if θ is the slant angle of M. Then it satisfies $\lambda = \cos^2 \theta$.

Corollary3.6: [2]. Let M be a slant submanifolds of an almost contact metric manifold \overline{M} . Then for all $X, Y \in \Gamma(TM)$ we have

$$g(PX, PY) = \cos^2\theta \{g(X, Y) + \eta(X)\eta(Y)\}$$
(24)

$$g(FX, FY) = \sin^2\theta \{g(X, Y) + \eta(X)\eta(Y)\}.$$
 (25)

4. Contact Pseudo-Slant Submanifolds of Lorentzin Para Kenmotsu Manifold

In this section, in a Lorentzian para Kenmotsu manifold, necessary and sufficient conditions are given for a submanifold to be a contact pseudo-slant submanifold.

Let *M* be a slant submanifold of an almost Lorentzian paracontact metric manifold \overline{M} . *M* is said to be pseudo-slant of \overline{M} if there exit two orthogonal distributions D_{θ} and D^{\perp} on *M* such that:

TM has the orthogonal direct decomposition

$$TM = D^{\perp} \oplus D_{\theta}, \xi \in D_{\theta}$$

The distribution D_{θ} is slant with slant angle, that is, the slant angle between of D_{θ} and ϕD_{θ} is a constant. The distribution D^{\perp} is an anti-invariant, That is,

$$\varphi D^{\perp} \subset T^{\perp} M$$
 [12].

Let d_1 and d_2 be dimensional of distributions D^{\perp} and D_{θ} respectively. Then

If $d_2 = 0$ then, *M* is an anti-invariant submanifold. If $d_1 = 0$ and $\theta = 0$ then, *M* is an invariant submanifold.

If
$$d_1 = 0$$
 and $\theta \in \left(0, \frac{\pi}{2}\right)$ then, *M* proper slant submanifold.

If $\theta = \frac{\pi}{2}$ then, *M* is an anti-invariant submanifold.

If $d_1 d_2 \neq 0$ and $\theta \in \left(0, \frac{\pi}{2}\right)$ then, *M* is a proper pseudo-slant submanifold.

If $d_1 d_2 \neq 0$ and $\theta = 0$ then, *M* is a semi-invariant submanifold.

From the definitions, we can see that a slant submanifold is a generalization of invariant (if $\theta = 0$) and anti-invariant (if $\theta = \frac{\pi}{2}$) submanifolds. If the orthogonal complementary of φTM in $T^{\perp}M$ is

If the orthogonal complementary of φTM in $T^{\perp}M$ is denoted by *V*, then the normal bundle $T^{\perp}M$ can be decombosed as follows.

$$T^{\perp}M = FD_{\theta} \bigoplus FD^{\perp} \bigoplus \nu, \ FD_{\theta} \bot FD^{\perp}.$$

Definition 4.1 A contact pseudo slant submanifold M of a Lorentzian para-Kenmotsu manifold \overline{M} is said to be mixed-geodesic submanifold if

 $\sigma(X, Y) = 0$ for all $X \in \Gamma(D_{\theta}), Y \in \Gamma(D^{\perp})$.

Theorem 4.2. Let M be proper contact pseudo slant submanifold of a Lorentzian para-Kenmotsu manifold \overline{M} . M is either an anti-invariant or a mixed geodesic if B is parallel.

Proof: For all $X \in \Gamma(D_{\theta})$, $Y \in \Gamma(D^{\perp})$, from (18) and (19)

B parallel if and only if *F* parallel, thus $\nabla F = 0$. This implies

 $C\sigma(X, Y) - \sigma(X, PY) - \eta(Y)FX = 0.$ Replacing X by PX in the above equation, we get

$$C\sigma(PX,Y) - \sigma(PX,PY) = 0$$

for $Y \in \Gamma(D^{\perp}), PY = 0$. Hence

 $C\sigma(PX, Y) = 0.$ Replacing X by PX in the above equation, we have

 $C\sigma(P^2X,Y) = C\cos^2\theta\sigma(X,Y) = 0.$ Hence we have either $\sigma(X,Y) = 0$ (*M* is mixed geodesic) or $\theta = \frac{\pi}{2}$ (*M* is anti-invariant).

Theorem 4.3. Let M be totally umbilical proper contact pseudo slant submanidold of a Lorentzian

para-Kenmotsu manifold \overline{M} . If *B* is parallel, then *M* is either minimal or anti-invariant submanifold.

Proof: For all $X \in \Gamma(D_{\theta})$, $Y \in \Gamma(D^{\perp})$, from (18) and (19), we have: *B* parallel if and only if F parallel, so $\nabla F = 0$. This implies

 $C\sigma(X, Y) - \sigma(X, PY) - \eta(Y)FX = 0.$ Replacing *X* by *PX* in the above equation, we get

 $C\sigma(PX,Y) - \sigma(PX,PY) = 0$ for $Y \in \Gamma(D^{\perp})$, PY = 0. Hence

 $C\sigma(PX, Y) = 0.$ Since *M* is totally umbilical, from (12)

Cg(PX, Y)H = 0replacing X by PX in the above equation, we have

$$Cg(P^{2}X,Y)H = Cg(PX,PY)H = Ccos^{2}\theta g(X,Y)H = 0.$$

Hence we have either $\theta = \frac{\pi}{2}(M \text{ is anti-invariant})$ or $H = 0$ (*M* is minimal).

Theorem 4.4. Let M be a contact pseudo slant submanifold of a Lorentzian para-Kenmotsu manifold \overline{M} . Then D^{\perp} is integrable at all times.

Proof: For all $W, U \in \Gamma(D^{\perp})$, from (4), we have

 $(\overline{\nabla}_W \phi) U = -g(\phi W, U)\xi - \eta(U)\phi W = 0.$ By using (6), (7), (10) and (11) we have

$$-A_{FU}W + \nabla_{W}^{\perp}U - P\nabla_{W}U - F\nabla_{W}U - B\sigma(W, U) - C\sigma(W, U) = 0.$$

Comparing the tangent companents, we have

 $-A_{FU}W - P\nabla_W U - B\sigma(W, U) = 0$ (26) interchanging W and U, we get

 $-A_{FW}U - P\nabla_U W - B\sigma(U, W) = 0.$ (27) Subtracting equation (26) from (27) and using the fact that σ is symmetric, we get

$$A_{FU}W - A_{FW}U + P[W, U] = 0,$$

 $P[U,W] = A_{FU}W - A_{FW}U.$ (28) On the other hand, for all $Z \in \Gamma(TM)$. By using (6), (7) (8) and (16), we have

 $g(A_{FU}W - A_{FW}U, Z)$ = $g(\sigma(Z, W), FU) - g(\sigma(U, Z), FW)$ $= g(\sigma(Z, W), FU) - g(\widetilde{\nabla}_Z U, FW)$ = $g(\sigma(Z, W), FU) + g(\phi \widetilde{\nabla}_Z U, W)$ = $g(\sigma(Z, W), FU) + g(-A_{FU}Z + \nabla_Z^{\perp}FU, W)$ = $g(\sigma(Z, W), FU) - g(A_{FU}Z, W)$ = $g(\sigma(Z, W), FU) + g(\sigma(Z, W), FU) = 0$

Here

 $A_{FU}W = A_{FW}U.$ So, from (28), $[U,W] \in \Gamma(D^{\perp})$, for all $W, U \in \Gamma(D^{\perp})$. That is, D^{\perp} is every time integrable.

Theorem 4.5. Let M be a contact pseudo slant submanifold of a Lorentzian para-Kenmotsu manifold \overline{M} . Then the D_{θ} is integrable if and only if

$$\begin{split} \varpi_1 \{ \nabla_X PY - A_{FY}X - P\nabla_Y X - B\sigma(X, Y) + \eta(Y) PX \} \\ &= 0. \\ \text{for all } X, Y \in \Gamma(D_\theta). \\ \text{Proof: Let } \varpi_1 \text{ and } \varpi_2 \text{ the projections on } D^{\perp} \text{ and } D_\theta, \\ \text{respectively. For all } X, Y \in \Gamma(D_\theta) \text{ from (4), we have} \\ &(\overline{\nabla}_X \phi) Y = -g(\phi X, Y)\xi - \eta(Y)\phi X. \\ \text{On applying (6), (7), (10) and (11), we get} \end{split}$$

 $\nabla_{X} PY + \sigma(X, PY) - A_{FY}X + \nabla_{X}^{\perp}FY - P \nabla_{X}Y - F\nabla_{X}Y - B\sigma(X, Y) - C\sigma(X, Y) + g(\phi X, Y)\xi + \eta(Y)\phi X = 0.$ Comparing the tangential components $\nabla_{Y} PY - A = Y - P\nabla_{Y} Y - B\sigma(Y, Y) + g(\phi Y, Y)$

$$\nabla_{\mathbf{X}} \mathbf{P} \mathbf{Y} - \mathbf{A}_{\mathbf{F} \mathbf{Y}} \mathbf{X} - \mathbf{P} \nabla_{\mathbf{X}} \mathbf{Y} - \mathbf{B} \sigma(\mathbf{X}, \mathbf{Y}) + \mathbf{g}(\boldsymbol{\varphi} \mathbf{X}, \mathbf{Y}) + \eta(\mathbf{Y}) \mathbf{P} \mathbf{X} = \mathbf{0},$$

$$\nabla_{X} PY - A_{FY}X - P\nabla_{Y}X + P\nabla_{Y}X - P\nabla_{X}Y - B\sigma(X, Y) + g(\varphi X, Y)\xi + \eta(Y)PX = 0,$$

$$P[X,Y] = \nabla_{X} PY - A_{FY}X - P\nabla_{Y}X - B\sigma(X,Y) + g(\phi X, Y)\xi + \eta(Y)PX$$
(29)

 $X, Y \in \Gamma(D_{\theta}), [X, Y] \in \Gamma(D_{\theta}), so \varpi_1 P[X, Y] = 0.$ As a result, we conclude our theorem by applying ϖ_1 to both sides of (29) equation.

Theorem 4.6. Let M be a totally umbilical contact pseudo slant submanifold of a Lorentzian para-Kenmotsu manifold \overline{M} . Then at least one of the following satements is true.

i)*M* is proper contact pseudo slant submanifold,
ii) *H* ∈ Γ(ν),
iii) *Dim* (D[⊥]) = 1.
Proof: Let X ∈ Γ(D[⊥]) and using (4), we obtain

 $(\overline{\nabla}_X \phi) X = -g(\phi X, X) \xi - \eta(X) \phi X = 0.$ On applying (6), (7), (10) and (11), we get $-\mathbf{A}_{\mathrm{FX}}\mathbf{X} + \nabla_{\mathbf{X}}^{\perp}\mathbf{F}\mathbf{X} - \mathbf{F}\nabla_{\mathbf{X}}\mathbf{X} - \mathbf{B}\sigma(\mathbf{X},\mathbf{X}) - \mathbf{C}\sigma(\mathbf{X},\mathbf{X}) = 0.$

Comparing the tangential components

 $A_{FX}X + B\sigma(X, X) = 0.$ Taking the product by $Z \in \Gamma(D^{\perp})$, we obtain

 $g(A_{FX}X,Z) + g(B\sigma(X,X),Z) = 0.$ Because *M* is a totally umbilical, we get

$$0 = g(A_{FX}Z, X) + g(B\sigma(X, X), Z) = g(\sigma(Z, X), FX) + g(\sigma(X, X), FZ) = g(Z, X)g(H, FX) + g(X, X)g(H, FZ) = g(X, X)g(BH, Z) + g(Z, X)g(BH, X)$$

that is

g(BH, Z)X + g(BH, X)Z = 0.

Here *BH* is either zero or *X* and *Z* are linearly dependent vector fields. If $BH \neq 0$, than dim $(D^{\perp}) = 1$. Otherwise $H \in \Gamma(\mu)$. Since $D_{\theta} \neq 0$ M is contact pseudo slant submanifold. Since $\theta \neq 0$ and $d_1d_2 \neq 0$ proper contact pseudo slant submanifold.

References

[1] M. Atçeken and S.Dirik , On the geometry of pseudo-slant submanifold of a Kenmotsu manifold, Gulf Journal of Mathematics , 2(2)(2014),51-66.

[2] J. L. Cabrerizo, A. Carriazo, L. M. Fernandez, M. Fernandez, Slant submanifolds in Sasakian manifolds, Glasgow Mathematical Journal, 42, (2000), 125-138.
[3] A. Carriazo, New Devolopments in Slant Submanifolds Theory, Narosa publishing House, New Delhi, India, (2002).

[4] V. Chandra ,S. Lal , On 3-dimensional Lorentzian para Kenmotsu manifolds, Dif. Geo. Dyn. Sys., 22, 87-94, (2020)

[5] B. Y. Chen, Geometry of slant submanifolds, Katholieke Universiteit Leuven, Leuven, (1990).

[6 B.Y. Chen, Slant immersions, Bulletin of the Australian Mathematical Society, 41, (1990), 135-147.

[7] U.C. De and A. Sarkar, On Pseudo-slant submanifolds of trans-Sasakian manifolds, Proceedings of the Estonian Academy of Sciences, 60, 1(2011), 1-11, doi: 10.3176/proc.2011.1.01. [8] S. Dirik, M. Atçeken, Pseudo-slant submanifolds in Cosymplectic space forms, Acta Universitatis Sapientiae: Mathematica, 8, 1(2016), 53-74, doi: 10.1515/ausm-2016-0004.

[9] S. Dirik, M. Atçeken, "U. Yildirim, Pseudo-slant submanifold in Kenmotsu space forms, Journal of Advances in Mathematics, 11, 10(2016), 5680-5696.

[10] H. Haseeb, R. Prasad, Certain results on Lorentzian para Kenmotsu manifolds, Bol. Soc. Paran. Mat., 39(3), 201-220, (2021)

[11] H. Haseeb, R. Prasad, Some resultson Lorentzian Kenmotsu manifolds, Bulletin of the Transilvania University of Brasov. Mathematics, Informatics, Physics. Series II, 13(1), 185-198, (2020).

[12] V. A. Khan and M. A. Khan, Pseudo-slant submanifolds of a Sasakian manifold, Indian Journal of püre and applied Mathematics, 38, 1(2007), 31-42.
[13] M. A. Khan, Totally umbilical Hemi-slant submanifolds of Cosymplectic manifolds, Mathematica Aeterna, 3, 8(2013), 645-653.

[14] B. Laha and A. Bhattacharyya, Totally umbilical Hemislant submanifolds of LP-Sasakian Manifold, Lobachevskii Journal of Mathematics, 36, 2(2015), 127-131, doi: 10.1134/S1995080215020122.

[15] A. Lotta, Slant submanifolds in contact geometry, Bulletin of Mathematical Society Romania, 39, (1996), 183-198.

[16] R. Roşca , On Lorentzian Kenmotsu manifolds , Atti Accad. Peloritana Pericolanti, Cl. Sci., 69, 15-30, (1991).

[17] R. Sarı, Some properties curvture of Lorentzian Kenmotsu manifolds, Applied Mathematics and Nonlinear Sciences, 5(1), 283-292, (2020).

[18] R. Sarı ,A.T. Vanli , Slant submanifolds of Lorentzian Kenmotsu manifold, Mediterranean Journal of Mathematics, 16, 129, (2019).

[19] İ. Ünal, Generic submanifolds of Lorentzian para Kenmotsu manifold, KMU Journal of Engineering and Natural Sciences, 3(2), (2021), 79-85.

[20] M. M Tripathi ,U.C. De ., Lorentzian almost paracontact manifolds and their submanifolds, The Pure and Applied Mathematics, 8.2, 101-125, (2001).