Bio-oil production from microalgae by pyrolysis: A mini-review

  • G. Ozcakir Bilecik Şeyh Edebali University
  • A. Karaduman Ankara University
Keywords: microalgae, pyrolysis, bio-oil upgrading, biofuel

Abstract

Fossil fuel (petroleum, coal, natural gas) reserves have decreased, so it has been necessary to find renewable, sustainable and eco-friendly resources. Biofuels which have been classified as bioethanol, biodiesel, biogas etc. have been obtained from biomass resources. Microalgae as a biomass source can be cultivated in fresh water, brine, sewage or barren lands in a short span of time on a large scale. Its production technology requires the steps which are cultivation, harvesting and drying. After that, the methods such as pyrolysis, transesterification or fermentation can be used for biofuel production from microalgae. Bio-oil production from microalgae have been done by using pyrolysis technique. It has been possible that after upgrading, microalgal bio-oil has been used as biofuel. Upgrading has been necessary because the bio-oil has possessed some undesired properties such as high oxygen content, low high heating value, high viscosity. Thermal cracking with zeolites and co-pyrolysis with several materials have been used to obtain high quality biofuel in one step. Besides that, it has been possible to use bio-oil as a chemical resource because it composes of 100 invaluable compounds in average such as oxygenated ones.

Author Biographies

G. Ozcakir, Bilecik Şeyh Edebali University

Chemical Engineering

A. Karaduman, Ankara University

Chemical Engineering

References

[1] Zainan NH, Srivatsa SC, Li F, Bhattacharya S. “Quality of bio-oil from catalytic pyrolysis of microalgae Chlorella vulgaris”. Fuel, 223, 12–19, 2018. doi: 10.1016/j.fuel.2018.02.166.
[2] Ozturk M and Dincer I. “Comparative environmental impact assessment of various fuels and solar heat for a combined cycle”. Int. J. Hydrogen Energy, 44(10), 5043–5053, 2019. doi: 10.1016/j.ijhydene.2019.01.003.
[3] Hassan H, Lim JK, and Hameed BH. “Catalytic co-pyrolysis of sugarcane bagasse and waste high-density polyethylene over faujasite-type zeolite”. Bioresour. Technol., 284, 406–414, 2019. doi: 10.1016/j.biortech.2019.03.137.
[4] Rahman FA, Aziz MMA, Saidur R, Bakar WAWA, Hainin MR, Putrajaya R and Hassan NA. “Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future”. Renewable and Sustainable Energy Reviews, 71, 112-126, 2017. doi: 10.1016/j.rser.2017.01.011.
[5] “International - U.S. Energy Information Administration (EIA).” [Online]. Available: https://www.eia.gov/international/data/world/other-statistics/emissions-by-fuel?pd=40&p=00000000000000000000000000000000000000000000000000000001&u=0&f=A&v=mapbubble&a=-&i=none&vo=value&t=C&g=none&l=249-00000002000g00000000000g0000000000000000000000g2&s=94694400000&e=1514764800000&&ev=false. [Accessed: 24-February-2021].
[6] Panwar NL, Kaushik SC, and Kothari S. “Role of renewable energy sources in environmental protection: A review”. Renewable and Sustainable Energy Reviews, 15(3), 1513–1524, 2011. doi: 10.1016/j.rser.2010.11.037.
[7] Balat M. “Use of biomass sources for energy in Turkey and a view to biomass potential”. Biomass and Bioenergy, 29(1), 32–41, 2005. doi: 10.1016/j.biombioe.2005.02.004.
[8] Demirbas A. “Biofuels sources, biofuel policy, biofuel economy and global biofuel projections”. Energy Convers. Manag., 49(8), 2106–2116, 2008. doi: 10.1016/j.enconman.2008.02.020.
[9] “International - U.S. Energy Information Administration (EIA).” [Online]. Available: https://www.eia.gov/international/data/world/biofuels/biofuels-production?pd=79&p=000002&u=1&f=A&v=mapbubble&a=-&i=none&vo=value&&t=C&g=none&l=249-00200000000g0000000000004000000000000000000000g201&s=915148800000&e=1420070400000&ev=false. [Accessed: 24-February-2021].
[10] Jena U and Das KC. “Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae”. Energy and Fuels, 25(11), 5472–5482, 2011. doi: 10.1021/ef201373m.
[11] Pittman JK, Dean AP and Osundeko O. “The potential of sustainable algal biofuel production using wastewater resources”. Bioresour. Technol., 102(1), 17–25, 2011. doi: 10.1016/j.biortech.2010.06.035.
[12] Li F, Srivatsa SC and Bhattacharya S. “A review on catalytic pyrolysis of microalgae to high-quality bio-oil with low oxygeneous and nitrogenous compounds”. Renewable and Sustainable Energy Reviews, 108. 481–497, 2019. doi: 10.1016/j.rser.2019.03.026.
[13] Saber M, Nakhshiniev B and Yoshikawa K. “A review of production and upgrading of algal bio-oil”. Renewable and Sustainable Energy Reviews, 58. 918–930, 2016. doi: 10.1016/j.rser.2015.12.342.
[14] Feng J, Yang Z, Hse CY, Su Q, Wang K, Jiang J and Xu J. “In situ catalytic hydrogenation of model compounds and biomass-derived phenolic compounds for bio-oil upgrading”. Renewable energy, 105, 140-148, 2017. doi: 10.1016/j.renene.2016.12.054.
[15] Peng X, Ma X, Lin Y, Guo Z, Hu S, Ning X, Zhang, Y. “Co-pyrolysis between microalgae and textile dyeing sludge by TG–FTIR: kinetics and products”. Energy Conversion and Management, 100, 391-402, 2015. doi: 10.1016/j.enconman.2015.05.025.
[16] Liang S, Han Y, Wei L and McDonald AG. “Production and characterization of bio-oil and bio-char from pyrolysis of potato peel wastes”. Biomass Convers. Biorefinery, 5(3), 237–246, 2015. doi: 10.1007/s13399-014-0130-x.
[17] Mullen CA, Boateng AA, Goldberg NM, Lima IM, Laird DA, and Hicks KB. “Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis”. Biomass and Bioenergy, 34(1), 67–74, 2010. doi: 10.1016/j.biombioe.2009.09.012.
[18] Liu Y, Li Z, Yao L, Chen S, Zhang P and Deng L. “Confined growth of NiCo2S4 nanosheets on carbon flakes derived from eggplant with enhanced performance for asymmetric supercapacitors”. Chem. Eng. J., 366, 550–559, 2019. doi: 10.1016/j.cej.2019.02.125.
[19] Lanzetta M and Di Blasi C. “Pyrolysis kinetics of wheat and corn straw”. J. Anal. Appl. Pyrolysis, 44(2), 181–192, 1998. doi: 10.1016/S0165-2370(97)00079-X.
[20] Yu D, Hu S, Wang L, Chen Q, and Dong N. “Comparative study on pyrolysis characteristics and kinetics of oleaginous yeast and algae”. Int. J. Hydrogen Energy, 45(19), 10979–10990, 2020. doi: 10.1016/j.ijhydene.2020.02.052.
[21] Vassilev SV and Vassileva CG. “Composition, properties and challenges of algae biomass for biofuel application: An overview”. Fuel, 181. 1–33, 2016. doi: 10.1016/j.fuel.2016.04.106.
[22] Naldi M, Nizzoli D, Bartoli M, Viaroli P. “Effect of filter-feeding mollusks on growth of green macroalgae and nutrient cycling in a heavily exploited coastal lagoon”. Estuar. Coast. Shelf Sci., 239, 106679, 2020. doi: 10.1016/j.ecss.2020.106679.
[23] Thompson TM, Young BR and Baroutian S. “Advances in the pretreatment of brown macroalgae for biogas production”. Fuel Processing Technology, 195. 106151, 2019. doi: 10.1016/j.fuproc.2019.106151.
[24] Martone PT, Janot K, Fujita M, Wasteneys G, Ruel K, Joseleau JP and Estevez JM. “Cellulose-rich secondary walls in wave-swept red macroalgae fortify flexible tissues”. Planta, 250(6), 1867-1879, 2019. doi: 10.1007/s00425-019-03269-1.
[25] Sui Y and Vlaeminck SE. “Dunaliella Microalgae for Nutritional Protein: An Undervalued Asset”. Trends in Biotechnology, 38(1), 10–12, 2020. doi: 10.1016/j.tibtech.2019.07.011.
[26] Abdulla R, King TK, Jambo SA and Faik AA. Microalgae Chlorella as a Sustainable Feedstock for Bioethanol Production. Green Engineering for Campus Sustainability, 81-103, Singapore, Springer, 2020. doi: 10.1007/978-981-13-7260-5_7.
[27] Rajak U, Nashine P and Verma TN. “Assessment of diesel engine performance using spirulina microalgae biodiesel”. Energy, 166, 1025–1036, 2019. doi: 10.1016/j.energy.2018.10.098.
[28] Chernova NI, Kiseleva SV, Larina OM and Sytchev GA, “Manufacturing gaseous products by pyrolysis of microalgal biomass”. Int. J. Hydrogen Energy, 45(3), 1569–1577, 2020. doi: 10.1016/j.ijhydene.2019.11.022.
[29] Rawat I, Ranjith Kumar R, Mutanda T and Bux F. “Biodiesel from microalgae: A critical evaluation from laboratory to large scale production”. Applied Energy, 103, 444–467, 2013. doi: 10.1016/j.apenergy.2012.10.004.
[30] Yang X, Li Y, Hu Q. “Solid Matrix-Supported Supercritical CO2 Enhances Extraction of γ-Linolenic Acid from the Cyanobacterium Arthrospira (Spirulina) platensis and Bioactivity Evaluation of the Molecule in Zebrafish”. Mar. Drugs, 17(4), 203, 2019. doi: 10.3390/md17040203.
[31] García-Mañas F, Guzmán JL, Berenguel M and Acién FG. “Biomass estimation of an industrial raceway photobioreactor using an extended Kalman filter and a dynamic model for microalgae production”. Algal Res., 37, 103–114, 2019. doi: 10.1016/j.algal.2018.11.009.
[32] Ruangsomboon S, Dimak J, Jongput B, Wiwatanaratanabutr I and Kanyawongha P. “Outdoor open pond batch production of green microalga Botryococcus braunii for high hydrocarbon production: enhanced production with salinity”. Sci. Rep., 10(1), 1–12, 2020. doi: 10.1038/s41598-020-59645-5.
[33] Roy M and Mohanty K. “A comprehensive review on microalgal harvesting strategies: Current status and future prospects”. Algal Research, 44. 101683, 2019. doi: 10.1016/j.algal.2019.101683.
[34] Zhang H and Zhang X. “Microalgal harvesting using foam flotation: A critical review”. Biomass and Bioenergy, 120, 176–188, 2019. doi: 10.1016/j.biombioe.2018.11.018.
[35] de Carvalho JC, Sydney EB, Soccol CR. “Microalgal biomass pretreatment for integrated processing into biofuels, food, and feed”. Bioresource Technology, 300. 122719, 2020. doi: 10.1016/j.biortech.2019.122719.
[36] Javed F, Iqbal J, Bazmi AA. “Microalgae-based biofuels, resource recovery and wastewater treatment: A pathway towards sustainable biorefinery”. Fuel, 255, 115826, 2019. doi: 10.1016/j.fuel.2019.115826.
[37] Hossain SMZ. “Biochemical Conversion of Microalgae Biomass into Biofuel”. Chem. Eng. Technol., 42(12), 2594–2607, 2019. doi: 10.1002/ceat.201800605.
[38] Mercer P and Armenta RE. “Developments in oil extraction from microalgae”. Eur. J. Lipid Sci. Technol., 113(5), 539–547, 2011. doi: 10.1002/ejlt.201000455.
[39] Shakya R, Whelen J, Adhikari S, Mahadevan R and Neupane S. “Effect of temperature and Na2CO3 catalyst on hydrothermal liquefaction of algae”. Algal Res., 12, 80–90, 2015. doi: 10.1016/j.algal.2015.08.006.
[40] Barbosa JM, Andrade LA, Vieira LGM and Barrozo MAS. “Multi-response optimization of bio-oil production from catalytic solar pyrolysis of Spirulina platensis”. J. Energy Inst., In Press, 2020. doi: 10.1016/j.joei.2019.12.001.
[41] Imam T and Capareda S. “Characterization of bio-oil, syn-gas and bio-char from switchgrass pyrolysis at various temperatures”. J. Anal. Appl. Pyrolysis, 93, 170–177, 2012. doi: 10.1016/j.jaap.2011.11.010.
[42] Bach QV and Chen WH. “Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): A state-of-the-art review”. Bioresource Technology, 246, 88–100, 2017. doi: 10.1016/j.biortech.2017.06.087.
[43] Wang X, Zhao B, Tang X and Yang X. “Comparison of direct and indirect pyrolysis of micro-algae Isochrysis,” Bioresour. Technol., 179, 58–62, 2015. doi: 10.1016/j.biortech.2014.11.015.
[44] Payormhorm J, Kangvansaichol K, Reubroycharoen P, Kuchonthara P and Hinchiranan N. “Pt/Al2O3-catalytic deoxygenation for upgrading of Leucaena leucocephala-pyrolysis oil”. Bioresour. Technol., 139, 128–135, 2013. doi: 10.1016/j.biortech.2013.04.023.
[45] Fakayode OA, Aboagarib EAA, Zhou C and Ma H. “Co-pyrolysis of lignocellulosic and macroalgae biomasses for the production of biochar – A review”. Bioresource Technology, 297, 122408, 2020. doi: 10.1016/j.biortech.2019.122408.
[46] Chandran R, Kaliaperumal R, Balakrishnan S, Britten AJ, MacInnis J and Mkandawire M. “Characteristics of bio-oil from continuous fast pyrolysis of Prosopis juliflora”. Energy, 190, 116387, 2020. doi: 10.1016/j.energy.2019.116387.
[47] Bordoloi N, Narzari R, Sut D, Saikia R, Chutia RS and Kataki R. “Characterization of bio-oil and its sub-fractions from pyrolysis of Scenedesmus dimorphus”. Renew. Energy, 98, 245–253, 2016. doi: 10.1016/j.renene.2016.03.081.
[48] Chaiwong K, Kiatsiriroat T, Vorayos N and Thararax C. “Study of bio-oil and bio-char production from algae by slow pyrolysis”. Biomass and Bioenergy, 56, 600–606, 2013. doi: 10.1016/j.biombioe.2013.05.035.
[49] Pelaez-Samaniego MR, Mesa-Pérez J, Cortez LAB, Rocha JD, Sanchez CG and Marín H. “Use of blends of gasoline with biomass pyrolysis-oil derived fractions as fuels in an Otto engine”. Energy for Sustainable Development, 15(4), 376-381, 2011. doi: 10.1016/j.esd.2011.06.001.
[50] Kositkanawuth K, Sattler ML and Dennis B. “Pyrolysis of Macroalgae and Polysytrene: A Review”. Curr. Sustain. Energy Reports, 1(4), 121–128, 2014. doi: 10.1007/s40518-014-0020-7.
[51] Oasmaa A and Czernik S. “Fuel oil quality of biomass pyrolysis oils - state of the art for the end users”. Energy and Fuels, 13(4), 914–921, 1999. doi: 10.1021/ef980272b.
[52] tang Bao T, Zhou B, Deng J and jun Wu Z. “Research on the physical property of diesel-gasoline blend fuel”. J. Shanghai Jiaotong Univ., 19(6), 721–727, 2014. doi: 10.1007/s12204-014-1574-7.
[53] Duan P, Jin B, Xu Y and Wang F. “Co-pyrolysis of microalgae and waste rubber tire in supercritical ethanol”. Chem. Eng. J., 269, 262–271, 2015. doi: 10.1016/j.cej.2015.01.108.
[54] Wang X, Zhao B, and Yang X. “Co-pyrolysis of microalgae and sewage sludge: Biocrude assessment and char yield prediction”. Energy Convers. Manag., 117, 326–334, 2016. doi: 10.1016/j.enconman.2016.03.013.
[55] Dai M, Xu H, Yu Z, Fang S, Chen L, Gu W, Ma X. (2018). “Microwave-assisted fast co-pyrolysis behaviors and products between microalgae and polyvinyl chloride”. Applied Thermal Engineering, 136, 9-15, 2018. doi: 10.1016/j.applthermaleng.2018.02.102.
[56] Chen C, Ma X and He Y. “Co-pyrolysis characteristics of microalgae Chlorella vulgaris and coal through TGA”. Bioresour. Technol., 117, 264–273, 2012. doi: 10.1016/j.biortech.2012.04.077.
[57] Wu X, Wu Y, Wu K, Chen Y, Hu H and Yang M. “Study on pyrolytic kinetics and behavior: The co-pyrolysis of microalgae and polypropylene”. Bioresour. Technol., 192, 522–528, 2015. doi: 10.1016/j.biortech.2015.06.029.
[58] Özçakır G and Karaduman A. “Obtaining Hydrocarbon Rich Bio-Oil Via Catalytic Co-Pyrolysis of Plastic Wastes And Spirulina Sp. Microalgae”. International Journal of Research in Engineering and Science, 7(4), 12-22, 2019. URL: https://ijres.org/papers/Volume%207/Issue-4/C0704011222.pdf.
[59] Bravo-Suárez JJ, Chaudhari RV and Subramaniam B. Design of Heterogeneous Catalysts for Fuels and Chemicals Processing: An Overview. Novel Materials for Catalysis and Fuels Processing, Washington, DC, American Chemical Society: 2020. doi: 10.1021/bk-2013-1132.ch001.
[60] Gayubo AG, Aguayo AT, Atutxa A, Prieto R and Bilbao J. “Deactivation of a HZSM-5 zeolite catalyst in the transformation of the aqueous fraction of biomass pyrolysis oil into hydrocarbons”. Energy and Fuels, 18(6), 1640–1647, 2004. doi: 10.1021/ef040027u.
[61] Torri C, Fabbri D, Garcia-Alba L and Brilman DWF. “Upgrading of oils derived from hydrothermal treatment of microalgae by catalytic cracking over H-ZSM-5: A comparative Py-GC-MS study”. J. Anal. Appl. Pyrolysis, 101, 28–34, 2013. doi: 10.1016/j.jaap.2013.03.001.
[62] Busca G. Zeolites and Other Structurally Microporous Solids as Acid–Base Materials. Heterogeneous Catalytic Materials: Solid State Chemistry, Surface Chemistry and Catalytic Behaviour, 197-240, Elsevier, 2014. doi: 10.1016/B978-0-444-59524-9.00007-9.
[63] Xu Y, Yang B, Song R. “Catalytic pyrolysis and liquefaction behavior of microalgae for bio-oil production”. Bioresour. Technol., 300, 122665, 2020. doi: 10.1016/j.biortech.2019.122665.
[64] Ma C, Geng J, Zhang D and Ning X. “Non-catalytic and catalytic pyrolysis of Ulva prolifera macroalgae for production of quality bio-oil”. J. Energy Inst., 93(1), 303–311, 2020. doi: 10.1016/j.joei.2019.03.001.
[65] Abd Rahman NA, Fermoso J and Sanna A. “Stability of Li-LSX Zeolite in the Catalytic Pyrolysis of Non-Treated and Acid Pre-Treated Isochrysis Sp. Microalgae”. Energies, 13(4), 959, 2020. doi: 10.3390/en13040959.
[66] Chagas BM, Dorado C, Melo MA. “Catalytic pyrolysis-GC/MS of Spirulina: Evaluation of a highly proteinaceous biomass source for production of fuels and chemicals”. Fuel, 179, 124–134, 2016. doi: 10.1016/j.fuel.2016.03.076.
[67] Pan P, Hu C, Fan Y. “The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils”. Bioresour. Technol., 101(12), 4593–4599, 2010. doi: 10.1016/j.biortech.2010.01.070.
[68] Thangalazhy-Gopakumar S, Adhikari S, Chattanathan SA, Gupta RB. “Catalytic pyrolysis of green algae for hydrocarbon production using H +ZSM-5 catalyst”. Bioresour. Technol., 118, 150–157, 2012. doi: 10.1016/j.biortech.2012.05.080.
[69] Du Z, Hu B, Ma X, Ruan R. “Catalytic pyrolysis of microalgae and their three major components: Carbohydrates, proteins, and lipids”. Bioresour. Technol., 130, 777–782, 2013. doi: 10.1016/j.biortech.2012.12.115.
[70] Wang K and Brown RC. “Catalytic pyrolysis of microalgae for production of aromatics and ammonia”. Green Chem., 15(3), 675–681, 2013. doi: 10.1039/c3gc00031a.
[71] Anand, V, Sunjeev V and Vinu R. “Catalytic Fast Pyrolysis of Arthrospira Platensis (Spirulina) Algae Using Zeolites”. Journal of Analytical and Applied Pyrolysis, 118, 298–307, 2016. doi: 10.1016/j.jaap.2016.02.013.
[72] Lorenzetti C, Conti R, Fabbri D and Yanik J. “A comparative study on the catalytic effect of H-ZSM5 on upgrading of pyrolysis vapors derived from lignocellulosic and proteinaceous biomass”. Fuel, 166, 446–452, 2016. doi: 10.1016/j.fuel.2015.10.051.
[73] Nejati B, Adami P, Bozorg A, Tavasoli A and Mirzahosseini AH. “Catalytic pyrolysis and bio-products upgrading derived from Chlorella vulgaris over its biochar and activated biochar-supported Fe catalysts”. J. Anal. Appl. Pyrolysis, 104799, 2020. doi: 10.1016/j.jaap.2020.104799.
[74] Andrade LA, Barbosa JM, Barrozo MAS, and Vieira LGM. “A comparative study of the behavior of Chlamydomonas reinhardtii and Spirulina platensis in solar catalytic pyrolysis”. Int. J. Energy Res., 5289, 2020. doi: 10.1002/er.5289.
[75] Chen W, Che Q, Chen H. “Catalytic deoxygenation co-pyrolysis of bamboo wastes and microalgae with biochar catalyst”. Energy, 157, 472–482, 2018. doi: 10.1016/j.energy.2018.05.149.
[76] Yu Z, Lin Y, Ma X. “Catalytic characteristics of the fast pyrolysis of microalgae over oil shale: Analytical Py-GC/MS study,” Renew. Energy, 125, 465–471, 2018. doi: 10.1016/j.renene.2018.02.136.
Published
2021-06-30
How to Cite
Ozcakir, G., & Karaduman, A. (2021). Bio-oil production from microalgae by pyrolysis: A mini-review. Journal of Engineering Research and Applied Science, 10(1), 1640-1649. Retrieved from http://journaleras.com/index.php/jeras/article/view/229
Section
Articles