Reaction Kinetics and Mechanistic Shift in Non/Catalytic Esterification of PEGs: Microwave-Assisted vs. Conventional Esterification

  • Gulsen Karaca Bursa Technical University
  • Omur Aras Bursa Technical University
Keywords: Esterification, Microwave, Kinetic Study, Optimization, Reaction Mechanism Shift

Abstract

Esterification reactions play a crucial role in both industrial and biological systems, essential for the production of pharmaceuticals, polymers, and specialty chemicals. The esterification of polyethylene glycol (PEG) with chloroacetic acid (CAA) is important for surfactants, drug delivery systems, etc. This study investigates the esterification kinetics in a microwave-assisted, non-catalytic system, employing an alternative kinetic parameter estimation approach compared to conventional methods. Instead of separately analyzing temperature-dependent reaction rates, an optimization algorithm was used to simultaneously evaluate data from different temperatures. This novel method enhances the accuracy and reliability of kinetic parameters, while the absence of a catalyst significantly influenced the reaction mechanism, emphasizing the role of high-dielectric constant molecules. The esterification kinetics between CAA and PEGs were studied under both conventional and microwave-assisted conditions. Optimized kinetic data revealed that increasing PEG chain length resulted in decreased reaction rates, which was attributed to increased viscosity and steric hindrance effects. In the microwave method, lower rate constants were associated with the shorter thermal exposure of the reaction. Additionally, the collision frequency factor decreased with an increase in microwave power, due to the lower dielectric constants of PEG-based compounds. A significant change in reaction order was also observed under non-catalytic conditions; under microwave irradiation, PEG200 exhibited a reaction order of 1.5, while PEG400 showed second-order dependence. These findings offer new insights into the kinetic behavior of non-catalytic reactions and highlight the influence of molecular properties on reaction pathways. Ester formation was confirmed by FTIR and NMR analyses, providing evidence of successful esterification.

Author Biographies

Gulsen Karaca, Bursa Technical University

Bursa, Turkey

Omur Aras, Bursa Technical University

Chemical Engineering

Bursa, Turkey

References

S., Ortega-Requena, C., Montiel, F., Máximo, M., Gómez, M. D., Murcia, J., Bastida, Esters in Industry: An Overview of the Reactors Used in Their Biocatalytic Synthesis, Preprints, (2023) 1-31. https://doi.org/10.20944/preprints202312.0518.v1.

Z., Khan, F., Javed, Z., Shamair, A., Hafeez, T., Fazal, A., Aslam, W.B., Zimmerman, F., Rehman, Current developments in esterification reaction: A review on process and parameters, Journal of Industrial and Engineering Chemistry, 103 (2021) 80-101. https://doi.org/10.1016/j.jiec.2021.07.018.

G.S., Piva B., Fischer, M., Peruzzolo, B.M.S., Puton, T., Weschenfelder, A., Junges, C., Steffens, R.L., Cansian, N., Paroul, Mathematical modeling of enzymatic esterification process between essential oil from Cymbopogon winterianus and cinnamic acid, Industrial Crops and Products, 222 (2024) 119919. https://doi.org/10.1016/j.indcrop.2024.119919.

M., Mekala, V.R., Goli, Kinetics of esterification of methanol and acetic acid with mineral homogeneous acid catalyst, Chinese Journal of Chemical Engineering, 23 (2015) 100-105. http://dx.doi.org/10.1016/j.cjche.2013.08.002.

A.A., Bhusari, B., Mazumdar, A.P., Rathod, R.D., Khonde, Kinetics of catalyzed esterification of acetic acid with n-butanol using carbonized agro-waste, International Journal of Chemical Kinetics, 52(1) (2020) 1-13. 10.1002/kin.21361

V.S., Chandane, A.P., Rathod, K.L., Wasewar, P.G., Jadhav, Response Surface Methodology and Artificial Neural Networks for Optimization of Catalytic Esterification of Lactic Acid, Chemical Engineering & Technology, 43 (2020) 1-11. 10.1002/ceat.202000041.

R., Farouq, Y., Selim, Functionalized Polyethylene Glycol as a Catalyst for Esterification of Salicylic Acid, Journal of Polymers and the Environment, 31 (2023) 2285-2293. https://doi.org/10.1007/s10924-022-02754-1.

F.Z., Abdullah, A., Ma’amor, N.A., Daud, S.B.A., Hamid, Selective Synthesis Of PEG-Monoester Using Cesium Heteropoly Acid as Heterogeneous Catalyst, Química Nova, 40(5) (2017) 1-7. 10.21577/0100-4042.20170040.

R., Sirsam, D., Hansora, G.A., Usmani, A Mini-Review on Solid Acid Catalysts for Esterification Reactions, Journal of The Institution of Engineers (India): Series E, 97(2) (2016) 167-181. 10.1007/s40034-016-0078-4.

V., Singhania, M., Cortes-Clerget, J., Dussart-Gautheret, B., Akkachairin, J., Yu, N., Akporji, F., Gallou, B.H., Lipshutz, Lipase-catalyzed esterification in water enabled by nanomicelles. Applications to 1-pot multi-step sequences, Chemical Science, 13 (2022) 1440-1445. 10.1039/d1sc05660c.

Y.J., Lee, H.W.,Kim, J., Lee, B.H.,Kim, I.H.,Kim, Synthesis of structured lipids using microalgae oil and capric acid via a two-step enzyme reaction. Process Biochemistry, 150 (2025) 213-250. https://doi.org/10.1016/j.procbio.2025.01.009.

M., Zarei, M.T., Golmakani, A., Sardarian, Green synthesis of banana flavor using different catalysts: a comparative study of different methods, Green Chem. Physical Review Letters, 13:2 (2020) 83-92. 10.1080/17518253.2020.1737739.

A., Cindioglu, A.S.I., Ibrahim, Ö., Sönmez, Microwave-assisted esterification of oleic acid using pyrrolidonium-based bronsted-acidic ionic liquids catalyst, Fue, 382 (Part B) (2025) 133791. https://doi.org/10.1016/j.fuel.2024.133791.

X.C., Gu, Q.F., Zhang, Y.H., Pang, X.F., Shen, Microwave-assisted esterification and electro-enhanced solid-phase microextraction of omega-3 polyunsaturated fatty acids in eggs, Food Chemistry, 448 (2024) 139060. https://doi.org/10.1016/j.foodchem.2024.139060.

R.M.,Kulkarni, J.K., Dhanyashree, E., Varma, S.P., Sirivibha, Microwave assisted glycerol esterification using CeO2, ZrO2, mixed metal oxide catalyst, Materials Today: Proceedings, 102 (2024) 416-427. https://doi.org/10.1016/j.matpr.2023.10.130.

A.S., Bansode, D.D., Pukalei, N.L., Jadhav, U., Sayed, D.V., Pinjari, Sonochemical enzymatic esterification of oleic acid and tri-ethanolamine for a fabric softener in textile application, Chemical Engineering & Processing: Process Intensification, 137 (2019) 128-136. https://doi.org/10.1016/j.cep.2019.02.013.

N., Esmaeiliani, M., Arami, F.M., Mazaheri, S.M., Bidoki, A comparison between microwave-assisted and thermally synthesized esterquat softeners used as textile softening agents, The Journal of The Textile Institute, 105:6 (2014) 569-574. 10.1080/00405000.2013.827392.

A.R., Tehrani-Bagha, K., Holmberg, Cationic Ester-Containing Gemini Surfactants: Physical-Chemical Properties, Langmuir, 26(12) (2010) 9276-9282. 10.1021/la1001336.

S.B., Hiware, V.G., Gaikar, Solvent‑free esterification of stearic acid and ethylene glycol with heterogeneous catalysis in a stirred batch microwave reactor, SN Applied Sciences, 2 (2020) 712-721. https ://doi.org/10.1007/s4245 2-020-2486-9.

P., Patial, A., Shaheen, I., Ahmad, Gemini Pyridinium Surfactants: Synthesis and Their Surface Active Properties, Journal of Surfactants and Detergents, 17 (2014) 929-935. 10.1007/s11743-014-1563-8)

S.M., Shaba, A.A., Taha, A.H., Elgad, S.T., Taha, V.M., Sabet, D.H., Kim, A.H.E., Moustafa, Insights on Gemini cationic surfactants influence AgNPs synthesis: Controlling catalytic and antimicrobial activity, Journal of Molecular Liquids, 397 (2024) 124071. https://doi.org/10.1016/j.molliq.2024.124071.

D., Liu, X., Yang, T., Mao, X., Shang, L., Wang, Synthesis and characterization of gemini ester surfactant and its application in efficient fabric softening, Journal of Molecular Liquids, 299 (2020) 112236 . https://doi.org/10.1016/j.molliq.2019.112236.

S., Dutta, M., Ghosh, D., Mitra, Performance evaluation studies of PEG esters as biolubricant base stocks derived from non-edible oil sources via enzymatic esterification, Industrial Crops and Products, 195 (2023) 116429. https://doi.org/10.1016/j.indcrop.2023.116429.

W.V., Lobo, O.A.R.L., Paes, A.D.S., Sıosa, W., Pinheiro, C.A.S., Sousa, J.A., Bezerra, L., Novita, I.F., Cheng, L.K.C., Souza, F.A., Freitas, Application of sulfonated passion fruit seeds as a heterogeneous catalyst in the esterification of oleic and levulinic acids: Optimization of reaction parameters. Industrial Crops and Products, 241 (2025) 122355 . https://doi.org/10.1016/j.renene.2025.122355.

R., Cai, G., Hu, Y., Chenyang, Z., Huang, X., Wang, B., Han, Amino-acid-functionalized methanesulfonate ionic liquids as effective and reusable catalysts for oleic acid esterification, Sustainable Materials and Technologies, 43 (2025) e01190. https://doi.org/10.1016/j.susmat.2024.e01190.

C.H., Kuo, P., Nargotra, T.H., Lin, C.J., Shieh, Y.C., Liu, Ultrasonication-assisted lipase-catalyzed esterification of chlorogenic acid: A comparative study using fatty alcohol and acids in solvent and solvent-free conditions, Ultrasonics Sonochemistry, 113 (2025) 107218 . https://doi.org/10.1016/j.ultsonch.2024.107218.

L.G., Tonutti, M.A., Maquirriain, C.A., Querini, M.L., Pisarello, B.O.D., Costa, Sulfonic SBA-15 silica with amphiphilic properties: Effect of incorporating hydrophobic groups on the esterification of glycerine with fatty acids, Applied Catalysis A: General, 692 (2025) 120115. https://doi.org/10.1016/j.apcata.2025.120115.

Q., Zhang, Z., Gao, F., Xu, S., Tai, X., Liu, S., Mo, F., Niu, Surface Tension and Aggregation Properties of Novel Cationic Gemini Surfactants with Diethylammonium Headgroups and a Diamido Spacer, Langmuir, 28 (2012) 11979-11987. dx.doi.org/10.1021/la3011212.

M., Akram, H., Lal, M, Osama, F., Ansari, S., Anwar, K., Din, A., Ahmad, Samreen, N., Azum, H.M., Marwani, A.M., Asiri, An Insight View on Synthetic Protocol, Surface Activity, and Biological Aspects of Novel Biocompatible Quaternary Ammonium Cationic Gemini Surfactants, Journal of Surfactants and Detergents, 24(1) (2020) 1-15. 10.1002/jsde.12450.

N., Fatma, M., Panda, K., Din, M., Beg, Ester-bonded cationic gemini surfactants: Assessment of their cytotoxicity and antimicrobial activity, Journal of Molecular Liquids, 222 (2016) 390-394. http://dx.doi.org/10.1016/j.molliq.2016.07.044.

Z., Gao, S., Tai, Q., Zhang, Y., Zhao, B., Lü, Y., Ge, L., Huang, X., Tang, Synthesis and Surface Activity of Biquaternary Ammonium Salt Gemini Surfactants with Ester Bond, Wuhan University Journal of Natural Sciences, 13(2) (2008) 227-231. 10.1007/s11859-008-0219-9.

A., Dabiri, B., Honarvar, Investigation of Interfacial Tension Reduction, Wettability Alteration, and Oil Recovery Using a New Non-ionic Oil-Based Surfactant from Gemini Surfactants Family Coupled with Low- Salinity Water: Experimental Study on Oil-Wet Carbonate Rock, Journal of Surfactants and Detergents, 23(4) (2020) 821-829. https://doi.org/10.1002/jsde.12400.

V., Chauhan, M., Kumar, I., Soni, P., Shandilya, S., Singh, Synthesis, physical properties and cytotoxic assessment of ester-terminated gemini imidazolium surfactants, Journal of Molecular Liquids, 387 (2023) 122645. https://doi.org/10.1016/j.molliq.2023.122645.

S.M., Shaban, E.H.I., Ismael, A.M., Elsharif, A.H., Elged, N.M.E., Basiony, Preparation gemini non-ionic surfactants-based polyethylene oxide with variable hydrophobic tails for controlling the catalytic and antimicrobial activity of AgNPs. Journal of Molecular Liquids, 367 (2022) 120416. https://doi.org/10.1016/j.molliq.2022.120416.

S., Sripada, J.R., Kastner, Continuous catalytic esterification using a solid acid activated carbon monolith: Comparison of granular and monolith forms with a commercial catalyst. Chemical Engineering Journal, 476 (2023) 146586. https://doi.org/10.1016/j.cej.2023.146586.

J., Huang, Y., Li, R., Zhang, L., Wang, M., Bao, X., Yu, Ternary deep eutectic solvents for esterification of 2-methypropenoic acid with alcohols, Organic & Biomolecular Chemistry, 22(39) (2024) 7951-7955. https://doi.org/10.1039/d4ob01180e.

Q., Lin, W., Zhao, W., Liang, J., Zeng, H., Gao, W., Li, Glutaric anhydride esterification promotes wheat starch/glutein composite gel interaction: Formation, characterization, and oleogel applications, Food Research International, 201 (2025) 115562. https://doi.org/10.1016/j.foodres.2024.115562.

J., Wang, H., Cui, J., Wang, Z., Li, M., Wang, W., Yi, Enhancing esterification of small molecular acids with alcohols by molten salt hydrates, Applied Catalysis A: General, 638 (2022) 118640. https://doi.org/10.1016/j.apcata.2022.118640.

A., Fashi, A.F., Delavar, A., Zamani, N., Noshiranzadehi, H., Ebadipur, H., Ebadipur, H., F., Khanban, Green modification of corn starch through repeated freeze-thaw cycles (RFTC), microwave assisted solid state acetic acid esterification (MSAE), and by dual RFTC/MSAE treatment, Food Hydrocolloids, 146 (2024) 109303. https://doi.org/10.1016/j.foodhyd.2023.109303.

N.A., Abasi, R., Yusof, M.K., Aroua, H.A., Aziz, Z., Idris, Production of palm-based glycol ester over solid acid catalysed esterification of lauric acid via microwave heating. Chemical Engineering Journal, 382 (2020) 122975. https://doi.org/10.1016/j.cej.2019.122975.

S., Soltani, T.R., Shojaei, N., Khanian, T.S.Y., Chong, N., Asim, Y., Zhao, Artificial neural network method modeling of microwave-assisted esterification of PFAD over mesoporous TiO2‒ZnO catalyst. Renewable Energy, 187 (2022) 760-773. https://doi.org/10.1016/j.renene.2022.01.123.

J.B., Tarigan, A.F., Barus, N.T., Simamora, R.S., Tarigan, S., Perangin-angin, J., Ginting, E.K., Sitepu, Y.H., Taufiq-Yap, Microwave-intensified esterification of high-free fatty acid feedstock into biodiesel using waste chicken eggshells as a heterogeneous catalyst. Case Studies in Chemical and Environmental Engineering, 11 (2025) 101107. https://doi.org/10.1016/j.cscee.2025.101107.

V.R., Umrigar, M., Chakraborty, P.A., Parikh, H.P., Kohli, Optimization of process parameters for oleic acid esterification using microwave reactor: Catalytic activity, product distribution and reactor energy model. Energy Nexus, 7 (2022) 100127. https://doi.org/10.1016/j.nexus.2022.100127.

E.K., Sitepu, S., Hudiyono, Z.A.P., Sinaga, R., Pramudhita, D., Desmita, Y.F., Ginting, F., Sebayang, J.B., Tarigan, Microwave-Assisted Enzymatic Esterification Production of Emollient Esters, ACS Omega, 8 (2023) 39168-39173. https://doi.org/10.1021/acsomega.3c04336

N.S., Akream, M.I., Hamd, S.A., Gheni, F.T., Al-Sudani, A.E., Mohammed, H.R., Mohammed, M.M., Ali, S.M.R., Ahmed, N., Türkoz Karakullukçu, A.K., Tahah, High-yield activated carbon based ZnO-Ce bifunctional catalyst for production of biodiesel from waste cooking oil. Energy Conversion and Management, 321 (2024) 119054. https://doi.org/10.1016/j.enconman.2024.119054.

S.N., Nayak, M.G., Nayak, C.P., Bhasin, Parametric, kinetic, and thermodynamic studies of microwave-assisted esterification of Kusum oil. Fuel Communications, 8 (2021) 100018. https://doi.org/10.1016/j.jfueco.2021.10 0 018.

T., Lieu, S., Yusup, M., Moniruzzaman, Kinetic study on microwave-assisted esterification of free fatty acids derived from Ceiba pentandra Seed Oil. Bioresource Technology, 211 (2016) 248-256. http://dx.doi.org/10.1016/j.biortech.2016.03.105.

S.A.M., Johari, M.A.A., Farid, M., Ayoub, N.A., Rashidi, Y., Andou, Optimization and kinetic studies for biodiesel production from dairy waste scum oil via microwave assisted transesterification. Environmental Technology & Innovation, 34 (2024) 103580 . https://doi.org/10.1016/j.eti.2024.103580.

S.M., Tawfik, A.A., Abd-Elaal, S.M., Shaban, A.A., Roshdy, Surface, thermodynamic and biological activities of some synthesized Gemini quaternary ammonium salts based on polyethylene glycol. Journal of Industrial and Engineering Chemistry, 30 (2015) 112-119. http://dx.doi.org/10.1016/j.jiec.2015.05.011.

A.A., Abd-Elaal, S.M., Shaban, S.M., Tawfik, Three Gemini cationic surfactants based on polyethylene glycol as effective corrosion inhibitör for mild steel in acidic environment. Journal of the Association of Arab Universities for Basic and Applied Sciences, 24 (2017) 54-65. http://dx.doi.org/10.1016/j.jaubas.2017.03.004.

F., Tamaddon, S.E., Tadayonfar, Facile microwave-assisted preparation of an ester-based cationic gemini surfactant for the improved micellar synthesis of aminocyanopyridines. Journal of Molecular Structure, 1207 (2020) 127728. https://doi.org/10.1016/j.molstruc.2020.127728.

X., Xu, Y., Sun, W., Wang, L., Ju, R., Shu, H., Gu, An overview of polyethylene glycol composite phase change materials: Preparation, physicochemical properties and application. Journal of Energy Storage, 104 (2024) 114581. https://doi.org/10.1016/j.est.2024.114581.

L., Szentpály, S., Kaya, Introduction to Chemical Reactivity. Chemical Reactivity, (2022). pp.17-19. 10.1016/B978-0-32-390259-5.00006-8.

S., Oza, P., Kodgire, S.S., Kachhwaha, Shockwave power reactor (SPR)-assisted esterification of blended non-edible oils: Optimization and kinetics studies. Thermal Science and Engineering Progress, 59 (2025)103337. https://doi.org/10.1016/j.tsep.2025.103337.

P., Mwenge, A., Luboya, S., Muthubi, H., Rutto, T., Seodigeng, Biodiesel Production from Animal Fats Using Blast Furnace Geopolymer Heterogeneous Catalyst: Optimisation and Kinetic Study. Arabian Journal for Science and Engineering, (2025) https://doi.org/10.1007/s13369-024-09895-6.

N., Zarei, M.T., Golmakani, M., Keramat, M., Majdinasab, A., Karami, Process intensification for the autocatalytic esterification of citronellol using microwave radiation. LWT, 145 (2021) 111358. https://doi.org/10.1016/j.lwt.2021.111358.

A., Mulay, V.K., Rathod, Microwave-assisted heterogeneous esterification of dibutyl maleate: Optimization using response surface methodology. Chemical Data Collections, 34 (2021) 100740. https://doi.org/10.1016/j.cdc.2021.100740.

P., Mazo, L., Rios, D., Estenoz, M., Sponton, Self-esterification of partially maleated castor oil using conventional and microwave heating. Chemical Engineering Journal, 185-186 (2012) 347-351. 10.1016/j.cej.2012.01.099.

J., Zheng, Z.M., Png, S.H., Ng, G.X., Tham, E., Ye, S.S., Goh, X.J., Loh, Z., Li, Vitrimers: Current research trends and their emerging applications. Chemical Engineering Journal, 51 (2021) 586-625. https://doi.org/10.1016/j.mattod.2021.07.003.

A.B.D., Nandiyanto, R., Ragadhita, M., Fiandini, Interpretation of Fourier Transform Infrared Spectra (FTIR): A Practical Approach in the Polymer/Plastic Thermal Decomposition. Indonesian Journal of Science and Technology, 8(1) (2023) 113-126. 10.17509/ijost.v8i1.53297.

F., Askari, M., Zandi, P., Shokrolahi, M.H., Tabatabaei, E., Hajirasoliha, Reduction in protein absorption on ophthalmic lenses by PEGDA bulk modification of silicone acrylate-based formulation. Progress in Biomaterials, 8(3) (2019) 169-183. 10.1007/s40204-019-00119-x.

M., Sahu, V.R.M., Reddy, B., Kim, B., Patro, C., Park, W.K., Kim, P., Sharma, Fabrication of Cu2ZnSnS4 Light Absorber Using a Cost-Effective Mechanochemical Method for Photovoltaic Applications. Materials, 15(5) (2022) 1708-1724. https://doi.org/10.3390/ma15051708

G.C., Carvalho, M.F.V., Moura, H.G.C.,Castro, J.H.S., Junior, H.E.B., Silva, K.M., Santos, Z.M.S., Rocha, Influence of the atmosphere on the decomposition of vegetable oils: study of the profiles of FTIR spectra and evolution of gaseous products. Journal of Thermal Analysis And Calorimetry, 140 (2020) 2247-2258. https://doi.org/10.1007/s10973-019-08960-9.

N., Akram, M., Saeed, M., Usman, A., Mansha, F., Anjum, K.M., Zia, I., Mahmood, N., Mumtaz, W.G., Khan, Influence of Graphene Oxide Contents on Mechanical Behavior of Polyurethane Composites Fabricated with Different Diisocyanates. Polymers, 13 (2021) 444-460. https://doi.org/10.3390/polym13030444.

H.A., Miller, J., Ruggeri, A., Marchionni, M., Bellini, M.V., Pagliaro, C., Bartoli, A., Pucci, E., Passaglia, F., Vizza, Improving the Energy Efficiency of Direct Formate Fuel Cells with a Pd/C-CeO2 Anode Catalyst and Anion Exchange Ionomer in the Catalyst Layer, Energies, 11, (2018) 369-381. 10.3390/en11020369.

Published
2025-12-31
How to Cite
Karaca, G., & Aras, O. (2025). Reaction Kinetics and Mechanistic Shift in Non/Catalytic Esterification of PEGs: Microwave-Assisted vs. Conventional Esterification. Journal of Engineering Research and Applied Science, 14(2), 167-180. Retrieved from https://journaleras.com/index.php/jeras/article/view/392
Section
Articles