DFT and Experimental Studies on Synthesis of Bisphenol A: Determination of Optimal Feed profile in Semi-batch Reactor with Homogenous and Heterogonous Catalysts
Abstract
Bisphenol A (BPA) is theoretically synthesized with 2 moles of phenol and 1 mol of acetone. During the reaction, a stoichiometric ratio or high acetone concentration causes the formation of by-products. This situation has been confirmed by density functional theory (DFT) calculations in addition to the literature information. In these calculations, the B3LYP method and the 6-311++G(d, p) basis set were used. DFT calculations show that by-products can be formed in the synthesis of bisphenol a. The common method used to solve this problem is to work with high molar phenol/acetone ratios. But this brings additional operating and investment costs. In this study, semi-batch reaction experiments were performed which stoichiometric acetone was fed in reactor with various pulsed modes in the presence of homogenous and heterogonous catalysts such as HCL or Amberlyst w/wo enhancer. As a result, it has been shown that high conversion and selectivity can be achieved by providing energy efficiency.
References
Wang, B. H.; Dong, J. S.; Chen, S.; Wang, L. L.; Zhu, J. ZnCl₂ modified ion exchange resin as an efficient catalyst for the bisphenol-A production. Chin. Chem. Lett. 2014, 25, 1423–1427.
Yadav, G. D.; Kirthivasan, N. Synthesis of bisphenol-A: Comparison of efficacy of ion exchange resin catalysts vis-à-vis heteropolyacid supported on clay and kinetic modelling. Appl. Catal., A 1997, 154, 29–53.
Kosaka, Y.; Sinclair, K. Bisphenol-A from phenol and acetone with an ion-exchange resin catalyst—Union Carbide technology. Process Econ. Rev. 1982, 82, 9–62.
Nowińska, K.; Kaleta, W. Synthesis of bisphenol-A over heteropoly compounds encapsulated into mesoporous molecular sieves. Appl. Catal., A 2000, 203, 91–100.
Jeřábek, K.; Hanková, L.; Prokop, Z.; Lundquist, E. G. Relations between morphology and catalytic activity of ion exchanger catalysts for synthesis of bisphenol A. Appl. Catal., A 2002, 232, 181–188.
Kawase, M.; Inoue, Y.; Araki, T.; Hashimoto, T. The simulated moving-bed reactor for production of bisphenol A. Catal. Today 1999, 48, 199–209.
Chen, C. C.; Cheng, S.; Jang, L. Y. Dual-functionalized large pore mesoporous silica as an efficient catalyst for bisphenol-A synthesis. Microporous Mesoporous Mater. 2008, 109, 258–270.
Hou, L.; Cai, Q.; Lu, B.; Li, X.; Xiao, X.; Han, Y.; Cui, S. A novel solid acid for synthesis of bisphenol A. Catal. Lett. 2006, 441, 153–157.
Singh, A. P. Preparation of bisphenol-A over zeolite catalysts. Catal. Lett. 1992, 220, 431–435.
Das, D.; Lee, J. F.; Cheng, S. Selective synthesis of Bisphenol-A over mesoporous MCM silica catalysts functionalized with sulfonic acid groups. J. Catal. 2004, 223, 152–160.
Wang, B.; Wang, L.; Zhu, J.; Chen, S.; Sun, H. Condensation of phenol and acetone on a modified macroreticular ion exchange resin catalyst. Front. Chem. Sci. Eng. 2013, 344, 218–225.
Jia, L. J.; Hua, C. Y.; Dai, L. Y.; Shan, Y. K. Synthesis of bisphenol A catalyzed by Et₃NHCl-AlCl₃ ionic liquids. React. Kinet. Catal. Lett. 2004, 194, 235–240.
Park, D. W.; Mun, N. Y.; Kim, K. H.; Kim, I.; Park, S. W. Addition of carbon dioxide to allyl glycidyl ether using ionic liquids catalysts. Catal. Today 2006, 115, 130–133.
Laufer, W.; Niederer, J. P.; Hoelderich, W. F. New direct hydroxylation of benzene with oxygen in the presence of hydrogen over bifunctional palladium/platinum catalysts. Adv. Synth. Catal. 2002, 344, 1084–1089.
Ouk, S.; Thiébaud, S.; Borredon, E.; Le Gars, P. High performance method for O-methylation of phenol with dimethyl carbonate. Appl. Catal., A 2003, DOI: 10.1016/S0926-860X(02)00467-2.
Al-Megren, H. A.; Poerio, T.; Brunetti, A.; Barbieri, G.; Drioli, E.; Al-Hedaib, B. S.; Al-Hamdan, A. S.; Al-Kinany, M. C. Liquid phase benzene hydroxylation to phenol using semi-batch and continuous membrane reactors. Sep. Purif. Technol. 2013, 241, 227–233.
Callanan, L. H.; Burton, R. M.; Mullineux, J.; Engelbrecht, J. M. M.; Rau, U. Effect of semi-batch reactor configuration on aromatic hydroxylation reactions. Chem. Eng. J. 2012, 180, 255–262.
Chiu, C.; Dasari, M. A.; Suppes, G. J. Pyrolysis of heavy oil in the presence of supercritical water: The reaction kinetics in different phases. AIChE J. 2015, 61, 857–866.
Santacesaria, E.; Tesser, R.; Di Serio, M.; Turco, R.; Russo, V.; Verde, D. A biphasic model describing soybean oil epoxidation with H₂O₂ in a fed-batch reactor. Chem. Eng. J. 2011, 173, 198–209.
Maestri, F.; Rota, R. Selectivity problem for fine chemical reactions leading to nonvolatile products: Process configuration and boundary diagrams. Chem. Eng. Sci. 2013, 90, 1–8.
Neagu, L. Synthesis of Bisphenol A with Heterogeneous Catalysts. Queen’s University, 1998.
McKetta, J. J.; Cunningham, W. A. (Eds.) Encycl. Chem. Process Des. 1976, 4, 406–425.
Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648.
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision C.01; Gaussian, Inc.: Wallingford CT, 2010.
Bhat, N. V.; Minderman, P. A.; McAvoy, T.; Wang, N. S. Modeling chemical process systems via neural computation. IEEE Control Syst. Mag. 1990, 10, 24–30.
Nascimento, C. A. O.; Giudici, R.; Guardani, R. Neural network based approach for optimization of industrial chemical processes. Comput. Chem. Eng. 2000, 24, 2303–2314.
Chaudhuri, B.; Modak, J. M. Optimization of fed-batch bioreactor using neural network model. Bioprocess Eng. 1998, 19, 71–79.