DFT and Experimental Studies on Synthesis of Bisphenol A: Determination of Optimal Feed profile in Semi-batch Reactor with Homogenous and Heterogonous Catalysts

  • Yunus Kaya Bursa Technical University
  • Bugra Akman Bursa Technical University
  • Omur Aras Bursa Technical University
Keywords: DFT, BPA, Pulsed feed, Semi batch, Selectivity

Abstract

Bisphenol A (BPA) is theoretically synthesized with 2 moles of phenol and 1 mol of acetone. During the reaction, a stoichiometric ratio or high acetone concentration causes the formation of by-products. This situation has been confirmed by density functional theory (DFT) calculations in addition to the literature information. In these calculations, the B3LYP method and the 6-311++G(d, p) basis set were used. DFT calculations show that by-products can be formed in the synthesis of bisphenol a. The common method used to solve this problem is to work with high molar phenol/acetone ratios. But this brings additional operating and investment costs.  In this study, semi-batch reaction experiments were performed which stoichiometric acetone was fed in reactor with various pulsed modes in the presence of homogenous and heterogonous catalysts such as HCL or Amberlyst w/wo enhancer. As a result, it has been shown that high conversion and selectivity can be achieved by providing energy efficiency.

Author Biographies

Yunus Kaya, Bursa Technical University

Chemical Engineering

Bursa, Turkey

Bugra Akman, Bursa Technical University

Chemical Engineering

Bursa, Turkey

Omur Aras, Bursa Technical University

Chemical Engineering

Bursa, Turkey

References

Wang, B. H.; Dong, J. S.; Chen, S.; Wang, L. L.; Zhu, J. ZnCl₂ modified ion exchange resin as an efficient catalyst for the bisphenol-A production. Chin. Chem. Lett. 2014, 25, 1423–1427.

Yadav, G. D.; Kirthivasan, N. Synthesis of bisphenol-A: Comparison of efficacy of ion exchange resin catalysts vis-à-vis heteropolyacid supported on clay and kinetic modelling. Appl. Catal., A 1997, 154, 29–53.

Kosaka, Y.; Sinclair, K. Bisphenol-A from phenol and acetone with an ion-exchange resin catalyst—Union Carbide technology. Process Econ. Rev. 1982, 82, 9–62.

Nowińska, K.; Kaleta, W. Synthesis of bisphenol-A over heteropoly compounds encapsulated into mesoporous molecular sieves. Appl. Catal., A 2000, 203, 91–100.

Jeřábek, K.; Hanková, L.; Prokop, Z.; Lundquist, E. G. Relations between morphology and catalytic activity of ion exchanger catalysts for synthesis of bisphenol A. Appl. Catal., A 2002, 232, 181–188.

Kawase, M.; Inoue, Y.; Araki, T.; Hashimoto, T. The simulated moving-bed reactor for production of bisphenol A. Catal. Today 1999, 48, 199–209.

Chen, C. C.; Cheng, S.; Jang, L. Y. Dual-functionalized large pore mesoporous silica as an efficient catalyst for bisphenol-A synthesis. Microporous Mesoporous Mater. 2008, 109, 258–270.

Hou, L.; Cai, Q.; Lu, B.; Li, X.; Xiao, X.; Han, Y.; Cui, S. A novel solid acid for synthesis of bisphenol A. Catal. Lett. 2006, 441, 153–157.

Singh, A. P. Preparation of bisphenol-A over zeolite catalysts. Catal. Lett. 1992, 220, 431–435.

Das, D.; Lee, J. F.; Cheng, S. Selective synthesis of Bisphenol-A over mesoporous MCM silica catalysts functionalized with sulfonic acid groups. J. Catal. 2004, 223, 152–160.

Wang, B.; Wang, L.; Zhu, J.; Chen, S.; Sun, H. Condensation of phenol and acetone on a modified macroreticular ion exchange resin catalyst. Front. Chem. Sci. Eng. 2013, 344, 218–225.

Jia, L. J.; Hua, C. Y.; Dai, L. Y.; Shan, Y. K. Synthesis of bisphenol A catalyzed by Et₃NHCl-AlCl₃ ionic liquids. React. Kinet. Catal. Lett. 2004, 194, 235–240.

Park, D. W.; Mun, N. Y.; Kim, K. H.; Kim, I.; Park, S. W. Addition of carbon dioxide to allyl glycidyl ether using ionic liquids catalysts. Catal. Today 2006, 115, 130–133.

Laufer, W.; Niederer, J. P.; Hoelderich, W. F. New direct hydroxylation of benzene with oxygen in the presence of hydrogen over bifunctional palladium/platinum catalysts. Adv. Synth. Catal. 2002, 344, 1084–1089.

Ouk, S.; Thiébaud, S.; Borredon, E.; Le Gars, P. High performance method for O-methylation of phenol with dimethyl carbonate. Appl. Catal., A 2003, DOI: 10.1016/S0926-860X(02)00467-2.

Al-Megren, H. A.; Poerio, T.; Brunetti, A.; Barbieri, G.; Drioli, E.; Al-Hedaib, B. S.; Al-Hamdan, A. S.; Al-Kinany, M. C. Liquid phase benzene hydroxylation to phenol using semi-batch and continuous membrane reactors. Sep. Purif. Technol. 2013, 241, 227–233.

Callanan, L. H.; Burton, R. M.; Mullineux, J.; Engelbrecht, J. M. M.; Rau, U. Effect of semi-batch reactor configuration on aromatic hydroxylation reactions. Chem. Eng. J. 2012, 180, 255–262.

Chiu, C.; Dasari, M. A.; Suppes, G. J. Pyrolysis of heavy oil in the presence of supercritical water: The reaction kinetics in different phases. AIChE J. 2015, 61, 857–866.

Santacesaria, E.; Tesser, R.; Di Serio, M.; Turco, R.; Russo, V.; Verde, D. A biphasic model describing soybean oil epoxidation with H₂O₂ in a fed-batch reactor. Chem. Eng. J. 2011, 173, 198–209.

Maestri, F.; Rota, R. Selectivity problem for fine chemical reactions leading to nonvolatile products: Process configuration and boundary diagrams. Chem. Eng. Sci. 2013, 90, 1–8.

Neagu, L. Synthesis of Bisphenol A with Heterogeneous Catalysts. Queen’s University, 1998.

McKetta, J. J.; Cunningham, W. A. (Eds.) Encycl. Chem. Process Des. 1976, 4, 406–425.

Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648.

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision C.01; Gaussian, Inc.: Wallingford CT, 2010.

Bhat, N. V.; Minderman, P. A.; McAvoy, T.; Wang, N. S. Modeling chemical process systems via neural computation. IEEE Control Syst. Mag. 1990, 10, 24–30.

Nascimento, C. A. O.; Giudici, R.; Guardani, R. Neural network based approach for optimization of industrial chemical processes. Comput. Chem. Eng. 2000, 24, 2303–2314.

Chaudhuri, B.; Modak, J. M. Optimization of fed-batch bioreactor using neural network model. Bioprocess Eng. 1998, 19, 71–79.

Published
2025-12-31
How to Cite
Kaya, Y., Akman, B., & Aras, O. (2025). DFT and Experimental Studies on Synthesis of Bisphenol A: Determination of Optimal Feed profile in Semi-batch Reactor with Homogenous and Heterogonous Catalysts. Journal of Engineering Research and Applied Science, 14(2), 294-304. Retrieved from https://journaleras.com/index.php/jeras/article/view/417
Section
Articles

Most read articles by the same author(s)